Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 25,48
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Publicado por Packt Pub Ltd
Librería: Academic Book Solutions, Medford, NY, Estados Unidos de America
EUR 37,90
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: LikeNew. Used Like New, no missing pages, no damage to binding, may have a remainder mark.
Publicado por Packt Publishing 2016-02, 2016
ISBN 10: 1785286315 ISBN 13: 9781785286315
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 45,01
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Publicado por Packt Publishing Limited, 2016
ISBN 10: 1785286315 ISBN 13: 9781785286315
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 52,82
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Publicado por Packt Publishing Limited, 2016
ISBN 10: 1785286315 ISBN 13: 9781785286315
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 48,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: preigu, Osnabrück, Alemania
EUR 60,05
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Regression Analysis with Python | Learn the art of regression analysis with Python | Luca Massaron (u. a.) | Taschenbuch | Kartoniert / Broschiert | Englisch | 2016 | Packt Publishing | EAN 9781785286315 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 68,68
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the art of regression analysis with PythonKey Features:Become competent at implementing regression analysis in PythonSolve some of the complex data science problems related to predicting outcomesGet to grips with various types of regression for effective data analysisBook Description:Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.What You Will Learn:Format a dataset for regression and evaluate its performanceApply multiple linear regression to real-world problemsLearn to classify training pointsCreate an observation matrix, using different techniques of data analysis and cleaningApply several techniques to decrease (and eventually fix) any overfitting problemLearn to scale linear models to a big dataset and deal with incremental dataWho this book is for:The book targets Python developers, with a basic understanding of data science, statistics, and math, who want to learn how to do regression analysis on a dataset. It is beneficial if you have some knowledge of statistics and data science.