Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 16,26
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 13,42
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 15,01
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Academic Enclave 3/1/2025, 2025
ISBN 10: 9348642510 ISBN 13: 9789348642516
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 53,47
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Regression Analysis with Classical and Statistical Learning Methods: An Easy Guide for Data Scientists, Business Analysts and Engineers using Python 1.9. Book.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 46,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 58,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 62,59
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 68,31
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 59,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 85,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: CitiRetail, Stevenage, Reino Unido
EUR 64,31
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 70,82
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Rarewaves.com UK, London, Reino Unido
EUR 78,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Publicado por Academic Enclave Mär 2025, 2025
ISBN 10: 9348642510 ISBN 13: 9789348642516
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 76,30
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. 502 pp. Englisch.
Publicado por Academic Enclave Mär 2025, 2025
ISBN 10: 9348642510 ISBN 13: 9789348642516
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 76,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 502 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 82,98
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning.