Librería: George Cross Books, Lexington, MA, Estados Unidos de America
Miembro de asociación: IOBA
Original o primera edición
EUR 48,06
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. First edition. Near Fine/No Jacket (24871) Near fine in lightly rubbed pictorial green boards. Clean, tight, unmarked, probably unused. No dust jacket, as issued. . 294.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 62,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 58,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 80,15
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 302 pages. 9.01x5.98x0.69 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 54,04
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Birkhäuser Boston, Birkhäuser Boston Mai 2012, 2012
ISBN 10: 1461581834 ISBN 13: 9781461581833
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 85,55
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 304 pp. Englisch.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 102,61
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por Boston ; Basel : Birkhäuser,, 1988
ISBN 10: 0817633847 ISBN 13: 9780817633844
Idioma: Alemán
Librería: Licus Media, Utting a. Ammersee, Alemania
Miembro de asociación: BOEV
EUR 49,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoGebundene Ausgabe. Condición: Sehr gut. en. 294 S. : graph. Darst. ; 24 cm In englischer Sprache. Original-Pappeinband mit Rücken- und Deckelbetitelung, kein Schutzusmchlag. Ordentlich ausgesondertes Bibliotheksexemplar. ohne äußerliche Kennzeichnungen in sehr guter Erhaltung. Signatur- / Entwidmungsstempel a. Vorsatz und Titel. 9780817633844 Werktäglicher Versand. Jede Lieferung m. ordentl. Rechnung und ausgew. MwSt. Der Versand erfolgt als Büchersendung / Einschreiben mit der Deutschen Post bzw. als Päckchen / Paket mit DHL. Die Lieferzeit ist abhängig von der Versandart und beträgt innerhalb Deutschlands 3-5 Tage, in der EU 5 - 12 Tage. KEIN Versand an Packstationen. Körperschaften und juristische Personen werden auf Wunsch per offener Rechnung beliefert. Sprache: Deutsch Gewicht in Gramm: 782.
EUR 149,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Edition 1988. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slight signs of wear on the cover. Edition 1988. Ammareal gives back up to 15% of this item's net price to charity organizations.
Librería: dsmbooks, Liverpool, Reino Unido
EUR 143,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Good. Good. book.
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 236,20
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. 294 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04108 3764333847 Sprache: Englisch Gewicht in Gramm: 550.
EUR 233,65
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Very Good. Very Good. book.
Librería: moluna, Greven, Alemania
EUR 48,74
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin .
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 68,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 477.
Publicado por Birkhäuser Boston Mai 2012, 2012
ISBN 10: 1461581834 ISBN 13: 9781461581833
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 85,55
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Mathematicians often face the question to which extent mathematical models describe processes of the real world. These models are derived from experimental data, hence they describe real phenomena only approximately. Thus a mathematical approach must begin with choosing properties which are not very sensitive to small changes in the model, and so may be viewed as properties of the real process. In particular, this concerns real processes which can be described by means of ordinary differential equations. By this reason different notions of stability played an important role in the qualitative theory of ordinary differential equations commonly known nowdays as the theory of dynamical systems. Since physical processes are usually affected by an enormous number of small external fluctuations whose resulting action would be natural to consider as random, the stability of dynamical systems with respect to random perturbations comes into the picture. There are differences between the study of stability properties of single trajectories, i. e. , the Lyapunov stability, and the global stability of dynamical systems. The stochastic Lyapunov stability was dealt with in Hasminskii [Has]. In this book we are concerned mainly with questions of global stability in the presence of noise which can be described as recovering parameters of dynamical systems from the study of their random perturbations. The parameters which is possible to obtain in this way can be considered as stable under random perturbations, and so having physical sense. -1- Our set up is the following. 304 pp. Englisch.