EUR 16,95
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Bueno. : Este libro, escrito por Joaquim Anto?nio dos Santos Gromicho, explora la optimización cuasiconvexa y la teoría de la localización. Originalmente presentada como la tesis doctoral del autor en Rotterdam en 1995, esta obra incluye referencias bibliográficas y un resumen en neerlandés. El libro forma parte de la serie de investigación del Instituto Tinbergen, número 90, y aborda temas de programación convexa y funciones convexas, siendo relevante para estudiantes y profesionales en el campo de la investigación operativa y la optimización matemática. EAN: 9789051703214 Tipo: Libros Categoría: Tecnología|Ciencias Título: Quasiconvex Optimization and Location Theory Autor: Joaquim Anto?nio dos Santos Gromicho Editorial: Thesis Pub Idioma: en Páginas: 196 Formato: tapa blanda.
Librería: Kloof Booksellers & Scientia Verlag, Amsterdam, Holanda
EUR 20,95
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: very good. Amsterdam: Thesis,1995. Paperback. xvi,196p. Diss. (Tinbergen Institute Research Series 90). Library stamp. Condition : very good copy. ISBN 9789051703214. Keywords : ECONOMICS, statistics.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 103,98
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 110,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 110,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 153,24
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 240 pages. 9.45x6.30x0.55 inches. In Stock.
EUR 95,80
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Quasiconvex Optimization and Location Theory | J. A. dos Santos Gromicho | Taschenbuch | xxii | Englisch | 2011 | Springer US | EAN 9781461333289 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 118,64
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New.
Publicado por Springer US, Springer New York, 2011
ISBN 10: 1461333288 ISBN 13: 9781461333289
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 109,94
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.
EUR 84,68
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 173,07
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
EUR 162,93
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.
EUR 36,00
Cantidad disponible: 1 disponibles
Añadir al carritoErasmus Univ. 1995 sewed, 196 pp. Thesis with Stellingen Perfect copy (code Sc-52).
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear. 244 pp. Englisch.
Publicado por Springer US, Springer New York Okt 2011, 2011
ISBN 10: 1461333288 ISBN 13: 9781461333289
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch.