Librería: Majestic Books, Hounslow, Reino Unido
EUR 39,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 40,64
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 41,53
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 90,61
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 265 pages. 9.00x6.00x0.75 inches. In Stock.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 40,44
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 67,57
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Quickly find solutions to common programming problemsencountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved!PySpark Recipescovers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model.What You Will Learn Understand the advanced features of PySpark2 and SparkSQLOptimize your codeProgram SparkSQL with PythonUse Spark Streaming and Spark MLlib with PythonPerform graph analysis with GraphFramesWho This Book Is ForData analysts, Python programmers, big data enthusiasts.