Publicado por The MIT Press Bookstore, 2020
ISBN 10: 0262538709 ISBN 13: 9780262538701
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 38,55
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 304.
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 44,42
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Used book that is in clean, average condition without any missing pages.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 52,06
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 54,41
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Publicado por The MIT Press Bookstore, 2020
ISBN 10: 0262538709 ISBN 13: 9780262538701
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 50,51
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 304.
Publicado por The MIT Press Bookstore, 2020
ISBN 10: 0262538709 ISBN 13: 9780262538701
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 48,43
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 304.
Publicado por MIT Press Ltd, Cambridge, Mass., 2020
ISBN 10: 0262538709 ISBN 13: 9780262538701
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 62,62
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises.This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws.The book presents key approaches in the three subfields of probabilistic machine learning- supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment. An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 63,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 62,38
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Mit Press, 2020
Idioma: Inglés
Librería: Books in my Basket, New Delhi, India
EUR 46,26
Cantidad disponible: 1 disponibles
Añadir al carritoSoft cover. Condición: New. ISBN:9780262538701.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 71,28
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2020. Illustrated. Paperback. . . . . .
EUR 77,58
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 269 pages. 9.75x8.00x0.75 inches. In Stock.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 88,19
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2020. Illustrated. Paperback. . . . . . Books ship from the US and Ireland.
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 64,89
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
EUR 64,45
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Publicado por MIT Press Ltd, Cambridge, Mass., 2020
ISBN 10: 0262538709 ISBN 13: 9780262538701
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 114,96
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises.This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws.The book presents key approaches in the three subfields of probabilistic machine learning- supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment. An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.