Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 59,30
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 55,74
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 76,73
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 356.
Publicado por Springer-Verlag New York Inc, 2008
ISBN 10: 3540786511 ISBN 13: 9783540786511
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 79,87
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1st edition. 339 pages. 9.00x6.00x1.00 inches. In Stock.
Librería: GoldBooks, Denver, CO, Estados Unidos de America
EUR 108,73
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: new.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Mär 2008, 2008
ISBN 10: 3540786511 ISBN 13: 9783540786511
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Inductive LogicProgramming¿byDeRaedtandKersting.Inasecondpart,itprovidesa detailedoverviewofthemostimportantprobabilisticlogiclearningformalisms and systems. We are very pleased and proud that the scientists behind the key probabilistic inductive logic programming systems (also those developed outside the APRIL project) have kindly contributed a chapter providing an overviewoftheircontributions.Thisincludes:relationalsequencelearningte- niques (Kersting et al.), using kernels with logical representations (Frasconi andPasserini),MarkovLogic(Domingosetal.), the PRISMsystem (Satoand Kameya),CLP(BN)(SantosCostaetal.),BayesianLogicPrograms(Kersting andDeRaedt),andtheIndependentChoiceLogic(Poole).Thethirdpartthen provides a detailed account of some show-caseapplications of probabilistic - ductive logic programming, more speci cally: in protein fold discovery (Chen et al.), haplotyping (Landwehr and Mielik¿ ainen) and systems biology (Fages andSoliman). The nal parttouchesupon sometheoreticalinvestigationsand VI Preface includes chaptersonbehavioralcomparisonof probabilisticlogicprogramming representations(MuggletonandChen)andamodel-theoreticexpressivityan- ysis(Jaeger).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 356 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 3540786511 ISBN 13: 9783540786511
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - One of the key open questions within arti cial intelligence is how to combine probability and logic with learning. This question is getting an increased - tentioninseveraldisciplinessuchasknowledgerepresentation,reasoningabout uncertainty, data mining, and machine learning simulateously, resulting in the newlyemergingsub eldknownasstatisticalrelationallearningandprobabil- ticinductivelogicprogramming.Amajordriving forceisthe explosivegrowth in the amount of heterogeneous data that is being collected in the business and scienti c world. Example domains include bioinformatics, chemoinform- ics, transportation systems, communication networks, social network analysis, linkanalysis,robotics,amongothers.Thestructuresencounteredcanbeass- pleassequencesandtrees(suchasthosearisinginproteinsecondarystructure predictionandnaturallanguageparsing)orascomplexascitationgraphs,the WorldWideWeb,andrelationaldatabases. This book providesan introduction to this eld with an emphasison those methods based on logic programming principles. The book is also the main resultofthesuccessfulEuropeanISTFETprojectno.FP6-508861onAppli- tionofProbabilisticInductiveLogicProgramming(APRILII,2004-2007).This projectwascoordinatedbytheAlbertLudwigsUniversityofFreiburg(Germany, Luc De Raedt) and the partners were Imperial College London (UK, Stephen MuggletonandMichaelSternberg),theHelsinkiInstituteofInformationTe- nology(Finland,HeikkiMannila),theUniversit` adegliStudidiFlorence(Italy, PaoloFrasconi),andtheInstitutNationaldeRechercheenInformatiqueet- tomatiqueRocquencourt(France,FrancoisFages).Itwasconcernedwiththeory, implementationsandapplicationsofprobabilisticinductivelogicprogramming. Thisstructureisalsore ectedinthebook. The book starts with an introductory chapter to Probabilistic Inductive LogicProgramming byDeRaedtandKersting.Inasecondpart,itprovidesa detailedoverviewofthemostimportantprobabilisticlogiclearningformalisms and systems. We are very pleased and proud that the scientists behind the key probabilistic inductive logic programming systems (also those developed outside the APRIL project) have kindly contributed a chapter providing an overviewoftheircontributions.Thisincludes:relationalsequencelearningte- niques (Kersting et al.), using kernels with logical representations (Frasconi andPasserini),MarkovLogic(Domingosetal.), the PRISMsystem (Satoand Kameya),CLP(BN)(SantosCostaetal.),BayesianLogicPrograms(Kersting andDeRaedt),andtheIndependentChoiceLogic(Poole).Thethirdpartthen provides a detailed account of some show-caseapplications of probabilistic - ductive logic programming, more speci cally: in protein fold discovery (Chen et al.), haplotyping (Landwehr and Mielik ainen) and systems biology (Fages andSoliman). The nal parttouchesupon sometheoreticalinvestigationsand VI Preface includes chaptersonbehavioralcomparisonof probabilisticlogicprogramming representations(MuggletonandChen)andamodel-theoreticexpressivitya n- ysis(Jaeger).
EUR 50,35
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Probabilistic Inductive Logic Programming | Luc De Raedt (u. a.) | Taschenbuch | viii | Englisch | 2008 | Springer-Verlag GmbH | EAN 9783540786511 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer Berlin Heidelberg Mrz 2008, 2008
ISBN 10: 3540786511 ISBN 13: 9783540786511
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One of the key open questions within arti cial intelligence is how to combine probability and logic with learning. This question is getting an increased - tentioninseveraldisciplinessuchasknowledgerepresentation,reasoningabout uncertainty, data mining, and machine learning simulateously, resulting in the newlyemergingsub eldknownasstatisticalrelationallearningandprobabil- ticinductivelogicprogramming.Amajordriving forceisthe explosivegrowth in the amount of heterogeneous data that is being collected in the business and scienti c world. Example domains include bioinformatics, chemoinform- ics, transportation systems, communication networks, social network analysis, linkanalysis,robotics,amongothers.Thestructuresencounteredcanbeass- pleassequencesandtrees(suchasthosearisinginproteinsecondarystructure predictionandnaturallanguageparsing)orascomplexascitationgraphs,the WorldWideWeb,andrelationaldatabases. This book providesan introduction to this eld with an emphasison those methods based on logic programming principles. The book is also the main resultofthesuccessfulEuropeanISTFETprojectno.FP6-508861onAppli- tionofProbabilisticInductiveLogicProgramming(APRILII,2004-2007).This projectwascoordinatedbytheAlbertLudwigsUniversityofFreiburg(Germany, Luc De Raedt) and the partners were Imperial College London (UK, Stephen MuggletonandMichaelSternberg),theHelsinkiInstituteofInformationTe- nology(Finland,HeikkiMannila),theUniversit` adegliStudidiFlorence(Italy, PaoloFrasconi),andtheInstitutNationaldeRechercheenInformatiqueet- tomatiqueRocquencourt(France,FrancoisFages).Itwasconcernedwiththeory, implementationsandapplicationsofprobabilisticinductivelogicpr ogramming. Thisstructureisalsore ectedinthebook. The book starts with an introductory chapter to Probabilistic Inductive LogicProgramming byDeRaedtandKersting.Inasecondpart,itprovidesa detailedoverviewofthemostimportantprobabilisticlogiclearningformalisms and systems. We are very pleased and proud that the scientists behind the key probabilistic inductive logic programming systems (also those developed outside the APRIL project) have kindly contributed a chapter providing an overviewoftheircontributions.Thisincludes:relationalsequence learningte- niques (Kersting et al.), using kernels with logical representations (Frasconi andPasserini),MarkovLogic(Domingosetal.), the PRISMsystem (Satoand Kameya),CLP(BN)(SantosCostaetal.),BayesianLogicPrograms(Kersting andDeRaedt),andtheIndependentChoiceLogic(Poole).Thethirdpartthen provides a detailed account of some show-caseapplications of probabilistic - ductive logic programming, more speci cally: in protein fold discovery (Chen et al.), haplotyping (Landwehr and Mielik ainen) and systems biology (Fages andSoliman). The nal parttouchesupon sometheoreticalinvestigationsand VI Preface includes chaptersonbehavioralcomparisonof probabilisticlogicprogramming representations(MuggletonandChen)andamodel-theoreticexpressivityan- ysis(Jaeger). 356 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 79,71
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 356 Illus.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 80,87
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 356.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 3540786511 ISBN 13: 9783540786511
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Probabilistic Inductive Logic Programming.- Formalisms and Systems.- Relational Sequence Learning.- Learning with Kernels and Logical Representations.- Markov Logic.- New Advances in Logic-Based Probabilistic Modeling by PRISM.- CLP( ): Constraint Logic .