Publicado por Morgan & Claypool Publishers, 2018
ISBN 10: 1681734729 ISBN 13: 9781681734729
Idioma: Inglés
Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America
EUR 15,92
Convertir monedaCantidad disponible: 6 disponibles
Añadir al carritopaperback. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 37,86
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing AG, Cham, 2018
ISBN 10: 3031011899 ISBN 13: 9783031011894
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 40,20
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Information Retrieval performance measures are usually retrospective in nature, representing the effectiveness of an experimental process. However, in the sciences, phenomena may be predicted, given parameter values of the system. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Information Retrieval performance can be predicted with multiple terms, where statistical dependence between terms exists and is understood. These predictive models may be applied to realistic problems, and then the results may be used to validate the accuracy of the methods used. The application of metadata or index labels can be used to determine whether or not these features should be used in particular cases. Linguistic information, such as part-of-speech tag information, can increase the discrimination value of existing terminology and can be studied predictively.This work provides methods for measuring performance that may be used predictively. Means of predicting these performance measures are provided, both for the simple case of a single term in the query and for multiple terms. Methods of applying these formulae are also suggested. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 36,77
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 41,57
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 39,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 47,49
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 38,08
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
EUR 35,03
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 37,97
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 42,79
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer International Publishing, Springer International Publishing Dez 2018, 2018
ISBN 10: 3031011899 ISBN 13: 9783031011894
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 35,30
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Information Retrieval performance measures are usually retrospective in nature, representing the effectiveness of an experimental process. However, in the sciences, phenomena may be predicted, given parameter values of the system. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Information Retrieval performance can be predicted with multiple terms, where statistical dependence between terms exists and is understood. These predictive models may be applied to realistic problems, and then the results may be used to validate the accuracy of the methods used. The application of metadata or index labels can be used to determine whether or not these features should be used in particular cases. Linguistic information, such as part-of-speech tag information, can increase the discrimination value of existing terminology and can be studied predictively.This work provides methods for measuring performance that may be used predictively. Means of predicting these performance measures are provided, both for the simple case of a single term in the query and for multiple terms. Methods of applying these formulae are also suggested.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 80 pp. Englisch.
Publicado por Springer International Publishing, 2018
ISBN 10: 3031011899 ISBN 13: 9783031011894
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 35,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Information Retrieval performance measures are usually retrospective in nature, representing the effectiveness of an experimental process. However, in the sciences, phenomena may be predicted, given parameter values of the system. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Information Retrieval performance can be predicted with multiple terms, where statistical dependence between terms exists and is understood. These predictive models may be applied to realistic problems, and then the results may be used to validate the accuracy of the methods used. The application of metadata or index labels can be used to determine whether or not these features should be used in particular cases. Linguistic information, such as part-of-speech tag information, can increase the discrimination value of existing terminology and can be studied predictively.This work provides methods for measuring performance that may be used predictively. Means of predicting these performance measures are provided, both for the simple case of a single term in the query and for multiple terms. Methods of applying these formulae are also suggested.
Publicado por Springer International Publishing AG, Cham, 2018
ISBN 10: 3031011899 ISBN 13: 9783031011894
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 74,43
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Information Retrieval performance measures are usually retrospective in nature, representing the effectiveness of an experimental process. However, in the sciences, phenomena may be predicted, given parameter values of the system. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Information Retrieval performance can be predicted with multiple terms, where statistical dependence between terms exists and is understood. These predictive models may be applied to realistic problems, and then the results may be used to validate the accuracy of the methods used. The application of metadata or index labels can be used to determine whether or not these features should be used in particular cases. Linguistic information, such as part-of-speech tag information, can increase the discrimination value of existing terminology and can be studied predictively.This work provides methods for measuring performance that may be used predictively. Means of predicting these performance measures are provided, both for the simple case of a single term in the query and for multiple terms. Methods of applying these formulae are also suggested. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 47,75
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Publicado por Springer International Publishing Dez 2018, 2018
ISBN 10: 3031011899 ISBN 13: 9783031011894
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 35,30
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Information Retrieval performance measures are usually retrospective in nature, representing the effectiveness of an experimental process. However, in the sciences, phenomena may be predicted, given parameter values of the system. After developing a measure that can be applied retrospectively or can be predicted, performance of a system using a single term can be predicted given several different types of probabilistic distributions. Information Retrieval performance can be predicted with multiple terms, where statistical dependence between terms exists and is understood. These predictive models may be applied to realistic problems, and then the results may be used to validate the accuracy of the methods used. The application of metadata or index labels can be used to determine whether or not these features should be used in particular cases. Linguistic information, such as part-of-speech tag information, can increase the discrimination value of existing terminology and can be studied predictively.This work provides methods for measuring performance that may be used predictively. Means of predicting these performance measures are provided, both for the simple case of a single term in the query and for multiple terms. Methods of applying these formulae are also suggested. 80 pp. Englisch.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 49,51
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2018
ISBN 10: 3031011899 ISBN 13: 9783031011894
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 32,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Information Retrieval performance measures are usually retrospective in nature, representing the effectiveness of an experimental process. However, in the sciences, phenomena may be predicted, given parameter values of the system. After developing a meas.