Librería: California Books, Miami, FL, Estados Unidos de America
EUR 54,35
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 54,53
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 49,71
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 66,26
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 144.
Idioma: Inglés
Publicado por Springer-Nature New York Inc, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Librería: Revaluation Books, Exeter, Reino Unido
EUR 69,18
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 140 pages. 9.45x6.61x0.33 inches. In Stock.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Nov 2023, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 48,14
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Nov 2022, 2022
ISBN 10: 3031190661 ISBN 13: 9783031190667
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 48,14
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 48,14
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland, 2022
ISBN 10: 3031190661 ISBN 13: 9783031190667
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 48,14
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
EUR 44,75
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Optimization Algorithms for Distributed Machine Learning | Gauri Joshi | Taschenbuch | xiii | Englisch | 2023 | Springer | EAN 9783031190698 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 31,32
Cantidad disponible: 5 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 55,49
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 53,49
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 54,05
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This item is printed on demand.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Nov 2023, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 48,14
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime. 144 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Nov 2022, 2022
ISBN 10: 3031190661 ISBN 13: 9783031190667
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 48,14
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime. 144 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 67,66
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 144.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 66,51
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 69,88
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 144.
Idioma: Inglés
Publicado por Springer, Berlin|Springer International Publishing|Springer, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Librería: moluna, Greven, Alemania
EUR 42,96
Cantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where th.
Librería: preigu, Osnabrück, Alemania
EUR 44,75
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Optimization Algorithms for Distributed Machine Learning | Gauri Joshi | Buch | xiii | Englisch | 2022 | Springer | EAN 9783031190667 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.