Publicado por New York: Springer-Verlag, 1997
ISBN 10: 0387949712 ISBN 13: 9780387949710
Idioma: Inglés
Librería: Antiquariat Bernhardt, Kassel, Alemania
EUR 47,90
Cantidad disponible: 1 disponibles
Añadir al carritogebundene Ausgabe. Condición: Sehr gut. Applied Mathematical Sciences, Band 124. Zust: Gutes Exemplar. XX, 779 S., Englisch 1260g.
EUR 28,00
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 229,47
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 296,93
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 277,75
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Optimization | Algorithms and Consistent Approximations | Elijah Polak | Taschenbuch | xx | Englisch | 2012 | Springer | EAN 9781461268611 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 344,95
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 338,84
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
EUR 329,54
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomestransparent.
Publicado por Springer New York, Springer US, 1997
ISBN 10: 0387949712 ISBN 13: 9780387949710
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 366,41
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomestransparent.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 458,77
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 802 pages. 9.25x6.10x1.82 inches. In Stock.
Librería: preigu, Osnabrück, Alemania
EUR 305,05
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Optimization | Algorithms and Consistent Approximations | Elijah Polak | Buch | xx | Englisch | 1997 | Humana | EAN 9780387949710 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.