EUR 28,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Seiten: 808 | Sprache: Englisch | Produktart: Bücher.
Publicado por New York: Springer-Verlag, 1997
ISBN 10: 0387949712 ISBN 13: 9780387949710
Idioma: Inglés
Librería: Antiquariat Bernhardt, Kassel, Alemania
EUR 47,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritogebundene Ausgabe. Condición: Sehr gut. Applied Mathematical Sciences, Band 124. Zust: Gutes Exemplar. XX, 779 S., Englisch 1260g.
Librería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America
EUR 57,42
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 2.75.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 314,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer New York, Springer US, 2012
ISBN 10: 1461268613 ISBN 13: 9781461268611
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 325,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomestransparent.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 351,65
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 333,52
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Publicado por Springer New York, Springer US, 1997
ISBN 10: 0387949712 ISBN 13: 9780387949710
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 366,41
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomestransparent.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 455,18
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 802 pages. 9.25x6.10x1.82 inches. In Stock.