Publicado por VDM Verlag Dr. Mueller Aktiengesellschaft & Co. KG, 2013
ISBN 10: 365942451X ISBN 13: 9783659424519
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 103,39
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 176.
Publicado por LAP LAMBERT Academic Publishing Aug 2013, 2013
ISBN 10: 365942451X ISBN 13: 9783659424519
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 64,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The aim of survival analysis is to explain and predict the survival, usually defined along the time domain. In this work we study it by means of regression models. In statistical data analysis it is common to consider the regression set up in which a given response variable depends on some factors and/or covariates. The model selection problem mainly consists in choosing the covariates which better explain the dependent variable in a precise and hopefully fast manner. This process usually has several steps: the first one is to collect considerations from an expert about the set of covariates, then the statistician derives a prior on model parameters and constructs a tool to solve the model selection problem. We consider the model selection problem in survival analysis when the response variable is the time to event. Under an objective Bayesian approach, some commonly used tools in literature are the Intrinsic Bayes factor (IBF) and the Fractional Bayes factor (FBF). In this thesis we deal with the variable selection problem for censored data. 176 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2013
ISBN 10: 365942451X ISBN 13: 9783659424519
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 58,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Perra SilviaSilvia Perra was born in Cagliari in 1985. In 2007 she graduated with honors in Mathematics and in 2009 she completed a master in Mathematics (University of Cagliari). In 2013 she obtained her PhD in Computer Science (Uni.
Publicado por LAP LAMBERT Academic Publishing, 2013
ISBN 10: 365942451X ISBN 13: 9783659424519
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 71,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The aim of survival analysis is to explain and predict the survival, usually defined along the time domain. In this work we study it by means of regression models. In statistical data analysis it is common to consider the regression set up in which a given response variable depends on some factors and/or covariates. The model selection problem mainly consists in choosing the covariates which better explain the dependent variable in a precise and hopefully fast manner. This process usually has several steps: the first one is to collect considerations from an expert about the set of covariates, then the statistician derives a prior on model parameters and constructs a tool to solve the model selection problem. We consider the model selection problem in survival analysis when the response variable is the time to event. Under an objective Bayesian approach, some commonly used tools in literature are the Intrinsic Bayes factor (IBF) and the Fractional Bayes factor (FBF). In this thesis we deal with the variable selection problem for censored data.
Publicado por LAP LAMBERT Academic Publishing Aug 2013, 2013
ISBN 10: 365942451X ISBN 13: 9783659424519
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 71,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The aim of survival analysis is to explain and predict the survival, usually defined along the time domain. In this work we study it by means of regression models. In statistical data analysis it is common to consider the regression set up in which a given response variable depends on some factors and/or covariates. The model selection problem mainly consists in choosing the covariates which better explain the dependent variable in a precise and hopefully fast manner. This process usually has several steps: the first one is to collect considerations from an expert about the set of covariates, then the statistician derives a prior on model parameters and constructs a tool to solve the model selection problem. We consider the model selection problem in survival analysis when the response variable is the time to event. Under an objective Bayesian approach, some commonly used tools in literature are the Intrinsic Bayes factor (IBF) and the Fractional Bayes factor (FBF). In this thesis we deal with the variable selection problem for censored data.Books on Demand GmbH, Überseering 33, 22297 Hamburg 176 pp. Englisch.
Publicado por VDM Verlag Dr. Mueller Aktiengesellschaft & Co. KG, 2013
ISBN 10: 365942451X ISBN 13: 9783659424519
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 108,12
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 176 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam.
Publicado por VDM Verlag Dr. Mueller Aktiengesellschaft & Co. KG, 2013
ISBN 10: 365942451X ISBN 13: 9783659424519
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 110,88
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 176.