Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 60,37
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por LAP LAMBERT Academic Publishing Jun 2023, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 43,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book summarizes The primary concern of supervised hashing is to convert the original features into short binary codes that can maintain label similarity in the Hamming space. Due to their strong generalization capabilities, non-linear hash functions have shown to be superior than linear ones. Kernel functions are frequently utilized in the literature to create non-linear hashing, which results in encouraging retrieval performance but long evaluation and training times. Here, we suggest using boosted decision trees, which are quick to train and assess and are hence more suited for hashing with high dimensional data. As part of continuous improvement, we first suggest sub-modular formulations for the hashing binary code inference issue as well as an effective block search technique based on Graph Cut for large-scale inference. Then, we train boosted decision trees to suit the binary codes in order to learn hash functions. Experiments show that in terms of retrieval precision and training duration, our suggested strategy greatly surpasses the majority of state-of-the-art methods.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: preigu, Osnabrück, Alemania
EUR 39,40
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. OBJECT CLASSIFICATION USING FAST SUPERVISED HASHING FOR HIGH DIMENSIONAL DATA | M. Aravind Kumar | Taschenbuch | Englisch | 2023 | LAP LAMBERT Academic Publishing | EAN 9786206172918 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Publicado por LAP LAMBERT Academic Publishing Jun 2023, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 43,90
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book summarizes The primary concern of supervised hashing is to convert the original features into short binary codes that can maintain label similarity in the Hamming space. Due to their strong generalization capabilities, non-linear hash functions have shown to be superior than linear ones. Kernel functions are frequently utilized in the literature to create non-linear hashing, which results in encouraging retrieval performance but long evaluation and training times. Here, we suggest using boosted decision trees, which are quick to train and assess and are hence more suited for hashing with high dimensional data. As part of continuous improvement, we first suggest sub-modular formulations for the hashing binary code inference issue as well as an effective block search technique based on Graph Cut for large-scale inference. Then, we train boosted decision trees to suit the binary codes in order to learn hash functions. Experiments show that in terms of retrieval precision and training duration, our suggested strategy greatly surpasses the majority of state-of-the-art methods. 72 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 61,95
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 63,05
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por LAP Lambert Academic Publishing, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 37,23
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book summarizes The primary concern of supervised hashing is to convert the original features into short binary codes that can maintain label similarity in the Hamming space. Due to their strong generalization capabilities, non-linear hash functions ha.
Publicado por LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206172910 ISBN 13: 9786206172918
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 44,59
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book summarizes The primary concern of supervised hashing is to convert the original features into short binary codes that can maintain label similarity in the Hamming space. Due to their strong generalization capabilities, non-linear hash functions have shown to be superior than linear ones. Kernel functions are frequently utilized in the literature to create non-linear hashing, which results in encouraging retrieval performance but long evaluation and training times. Here, we suggest using boosted decision trees, which are quick to train and assess and are hence more suited for hashing with high dimensional data. As part of continuous improvement, we first suggest sub-modular formulations for the hashing binary code inference issue as well as an effective block search technique based on Graph Cut for large-scale inference. Then, we train boosted decision trees to suit the binary codes in order to learn hash functions. Experiments show that in terms of retrieval precision and training duration, our suggested strategy greatly surpasses the majority of state-of-the-art methods.