Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 53,80
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 48,24
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 60,44
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer International Publishing AG, Cham, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Original o primera edición
EUR 64,02
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method.The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for o=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods.The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,03
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 58,97
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 65,54
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 85,49
Convertir monedaCantidad disponible: 20 disponibles
Añadir al carritoPaperback or Softback. Condición: New. New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks. Book.
Publicado por Springer International Publishing AG, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 87,39
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: SpringerBriefs in Applied Sciences and Technology. Num Pages: 111 pages, 94 black & white illustrations, biography. BIC Classification: UYQN. Category: (G) General (US: Trade). Dimension: 235 x 155 x 6. Weight in Grams: 186. . 2016. Paperback. . . . .
Publicado por Springer-Verlag New York Inc, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 75,26
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 112 pages. 9.00x6.00x0.50 inches. In Stock.
Publicado por Springer International Publishing, Springer International Publishing Jun 2016, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 112 pp. Englisch.
Publicado por Springer International Publishing AG, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 108,26
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: SpringerBriefs in Applied Sciences and Technology. Num Pages: 111 pages, 94 black & white illustrations, biography. BIC Classification: UYQN. Category: (G) General (US: Trade). Dimension: 235 x 155 x 6. Weight in Grams: 186. . 2016. Paperback. . . . . Books ship from the US and Ireland.
Publicado por Springer International Publishing, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method.The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods.The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error.
Publicado por Springer International Publishing AG, Cham, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 139,62
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method.The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for o=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods.The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer International Publishing Jun 2016, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method.The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods.The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error. 112 pp. Englisch.
Publicado por Springer International Publishing, 2016
ISBN 10: 3319340867 ISBN 13: 9783319340869
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proposes a neural network learning method with type-2 fuzzy weight adjustment Presents a mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weightsPresents simulation results and a comparati.