Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (17)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición Más información

Encuadernación

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (7)
  • No impresión bajo demanda (15)

Idioma (2)

Precio

Intervalo de precios personalizado (EUR)

Gastos de envío gratis

  • Envío gratis a España (No hay ningún otro resultado que coincida con este filtro.)

Ubicación del vendedor

  • Philip Hua

    Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 3,43 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Paperback. Condición: New. Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks. What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenarios Who This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques.

  • Hua, Philip

    Publicado por Apress, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: California Books, Miami, FL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 6,85 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New.

  • Philip Hua

    Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: Rarewaves.com UK, London, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 2,30 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Paperback. Condición: New. Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks. What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenarios Who This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques.

  • Philip Hua

    Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 3,43 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Paperback. Condición: New. Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks. What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenarios Who This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques.

  • Philip Hua

    Publicado por Springer-Verlag Berlin and Heidelberg GmbH and Co. KG, DE, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: Rarewaves.com USA, London, LONDO, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 2,30 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Paperback. Condición: New. Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks. What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenarios Who This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques.

  • Hua, Philip

    Publicado por Apress, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 17,12 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New.

  • Hua, Philip

    Publicado por Apress, 2025

    Librería: Books From California, Simi Valley, CA, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 12,42 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    paperback. Condición: Very Good.

  • Hua, Philip

    Publicado por Apress, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 17,12 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: As New. Unread book in perfect condition.

  • Hua, Philip

    Publicado por Apress, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: GreatBookPricesUK, Woodford Green, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 17,28 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New.

  • Hua, Philip

    Publicado por Apress, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: GreatBookPricesUK, Woodford Green, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 17,28 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: As New. Unread book in perfect condition.

  • Hua, Philip

    Publicado por Apress, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: Ria Christie Collections, Uxbridge, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 5,17 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New. In.

  • Philip Hua

    Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: CitiRetail, Stevenage, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 34,56 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks. What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenarios Who This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Philip Hua

    Publicado por Apress, Apress Jan 2025, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 35,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. Neuware -Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 192 pp. Englisch.

  • Philip Hua

    Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 64,23 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks. What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenarios Who This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Philip Hua

    Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: AussieBookSeller, Truganina, VIC, Australia

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 31,69 gastos de envío desde Australia a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks. What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenarios Who This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Philip Hua

    Publicado por Apress Jan 2025, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 11,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks.What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenariosWho This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques 270 pp. Englisch.

  • Philip Hua

    Publicado por Apress, Apress, 2025

    ISBN 13: 9798868810190

    Idioma: Inglés

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 11,99 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Explore the capabilities of machine learning and neural networks. This comprehensive guidebook is tailored for professional programmers seeking to deepen their understanding of neural networks, machine learning techniques, and large language models (LLMs).The book explores the core of machine learning techniques, covering essential topics such as data pre-processing, model selection, and customization. It provides a robust foundation in neural network fundamentals, supplemented by practical case studies and projects. You will explore various network topologies, including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and Large Language Models (LLMs). Each concept is explained with clear, step-by-step instructions and accompanied by Python code examples using the latest versions of TensorFlow and Keras, ensuring a hands-on learning experience.By the end of this book, you will gain practical skills to apply these techniques to solving problems. Whether you are looking to advance your career or enhance your programming capabilities, this book provides the tools and knowledge needed to excel in the rapidly evolving field of machine learning and neural networks.What You Will LearnGrasp the fundamentals of various neural network topologies, including DNN, RNN, LSTM, VAE, GAN, and LLMsImplement neural networks using the latest versions of TensorFlow and Keras, with detailed Python code examplesKnow the techniques for data pre-processing, model selection, and customization to optimize machine learning modelsApply machine learning and neural network techniques in various professional scenariosWho This Book Is ForData scientists, machine learning enthusiasts, and software developers who wish to deepen their understanding of neural networks and machine learning techniques.