Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 94,22
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 94,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,62
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 101,55
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 95,49
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 111,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 118,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 119,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 513.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 135,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Num Pages: 256 pages, illustrations. BIC Classification: UYQM. Category: (P) Professional & Vocational. Dimension: 163 x 238 x 18. Weight in Grams: 478. . 2014. 1st Edition. Hardcover. . . . .
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 167,87
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Num Pages: 256 pages, illustrations. BIC Classification: UYQM. Category: (P) Professional & Vocational. Dimension: 163 x 238 x 18. Weight in Grams: 478. . 2014. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland.
EUR 138,02
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Chapter 3 discusses two player games including two player matrix games with both pure and mixed strategies. Numerous algorithms and examples are presented. Chapter 4 covers learning in multi-player games, stochastic games, and Markov games, focusing on learning multi-player grid games--two player grid games, Q-learning, and Nash Q-learning. Chapter 5 discusses differential games, including multi player differential games, actor critique structure, adaptive fuzzy control and fuzzy interference systems, the evader pursuit game, and the defending a territory games. Chapter 6 discusses new ideas on learning within robotic swarms and the innovative idea of the evolution of personality traits.\* Framework for understanding a variety of methods and approaches in multi-agent machine learning.\* Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning\* Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 145,70
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 513.