Librería: Better World Books: West, Reno, NV, Estados Unidos de America
EUR 17,92
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Used book that is in clean, average condition without any missing pages.
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 17,92
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 35,59
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 54,20
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag New York Inc., New York, NY, 2012
ISBN 10: 146127074X ISBN 13: 9781461270744
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 106,50
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications. Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 104,54
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag New York Inc., New York, NY, 2000
ISBN 10: 0387989358 ISBN 13: 9780387989358
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Original o primera edición
EUR 106,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications. Bayesian statistics is one of the active research areas in statistics. This book provides the theoretical background behind the most important recent development, Markov chain Monte Carlos methods. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 103,39
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 85,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. New. book.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,58
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,58
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 126,00
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 142,46
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 408.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 143,26
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 406.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 126,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 157,94
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer New York, Springer US Jan 2000, 2000
ISBN 10: 0387989358 ISBN 13: 9780387989358
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 406 pp. Englisch.
EUR 111,53
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 154,08
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 404 pages. 9.25x6.10x0.91 inches. In Stock.
Publicado por Springer New York, Springer US, 2000
ISBN 10: 0387989358 ISBN 13: 9780387989358
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 114,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 168,33
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 200,68
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer-Verlag New York Inc., New York, NY, 2012
ISBN 10: 146127074X ISBN 13: 9781461270744
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 192,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications. Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer-Verlag New York Inc., New York, NY, 2000
ISBN 10: 0387989358 ISBN 13: 9780387989358
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 216,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications. Bayesian statistics is one of the active research areas in statistics. This book provides the theoretical background behind the most important recent development, Markov chain Monte Carlos methods. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 40,58
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 36,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 39,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 562.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 53,79
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 55,68
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.