Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 111,13
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 137,99
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 132.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 133,16
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Berlin Heidelberg, 2006
ISBN 10: 3642067921 ISBN 13: 9783642067921
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 150,79
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 131 pages. 9.00x6.00x0.30 inches. In Stock.
Librería: preigu, Osnabrück, Alemania
EUR 96,40
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Modelling and Optimization of Biotechnological Processes | Artificial Intelligence Approaches | Lei Zhi Chen (u. a.) | Taschenbuch | viii | Englisch | 2010 | Springer Vieweg | EAN 9783642067921 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Jan 2006, 2006
ISBN 10: 354030634X ISBN 13: 9783540306344
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks ,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti cial intelligence, system identi cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the nal product is achieved using modi ed genetic algorithms to determine optimal feed rate pro les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e ective methodology for optimizing biotechnological processes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642067921 ISBN 13: 9783642067921
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneof the major di culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti cial intelligence, system identi cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the nal product is achieved using modi ed genetic algorithms to determine optimal feed rate pro les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e ective methodology for optimizing biotechnological processes.
Publicado por Springer Berlin Heidelberg, 2006
ISBN 10: 354030634X ISBN 13: 9783540306344
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneof the major di culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti cial intelligence, system identi cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the nal product is achieved using modi ed genetic algorithms to determine optimal feed rate pro les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e ective methodology for optimizing biotechnological processes.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642067921 ISBN 13: 9783642067921
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 83,44
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 174,41
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 200,34
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Publicado por Springer Berlin Heidelberg Jan 2006, 2006
ISBN 10: 354030634X ISBN 13: 9783540306344
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks ,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti cial intelligence, system identi cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the nal product is achieved using modi ed genetic algorithms to determine optimal feed rate pro les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e ective methodology for optimizing biotechnological processes. 132 pp. Englisch.
Publicado por Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642067921 ISBN 13: 9783642067921
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks ,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti cial intelligence, system identi cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the nal product is achieved using modi ed genetic algorithms to determine optimal feed rate pro les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e ective methodology for optimizing biotechnological processes. 132 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642067921 ISBN 13: 9783642067921
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,.
Publicado por Springer Berlin Heidelberg, 2006
ISBN 10: 354030634X ISBN 13: 9783540306344
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di?culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti?cial intelligencemethods,inparticular,.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 147,67
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 132 66 Illus.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 149,39
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 132.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642067921 ISBN 13: 9783642067921
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Mostindustrialbiotechnologicalprocessesareoperatedempirically.Oneofthe major di culties of applying advanced control theories is the highly nonlinear nature of the processes. This book examines approaches based on arti cial intelligencemethods,inparticular,geneticalgorithmsandneuralnetworks,for monitoring, modelling and optimization of fed-batch fermentation processes. The main aim of a process control is to maximize the nal product with minimum development and production costs. This book is interdisciplinary in nature, combining topics from biotechn- ogy, arti cial intelligence, system identi cation, process monitoring, process modelling and optimal control. Both simulation and experimental validation are performed in this study to demonstrate the suitability and feasibility of proposed methodologies. An online biomass sensor is constructed using a - current neural network for predicting the biomass concentration online with only three measurements (dissolved oxygen, volume and feed rate). Results show that the proposed sensor is comparable or even superior to other sensors proposed in the literature that use more than three measurements. Biote- nological processes are modelled by cascading two recurrent neural networks. It is found that neural models are able to describe the processes with high accuracy. Optimization of the nal product is achieved using modi ed genetic algorithms to determine optimal feed rate pro les. Experimental results of the corresponding production yields demonstrate that genetic algorithms are powerful tools for optimization of highly nonlinear systems. Moreover, a c- bination of recurrentneural networks and genetic algorithms provides a useful and cost-e ective methodology for optimizing biotechnological processes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch.