EUR 65,66
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
EUR 73,59
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Publicado por Taylor & Francis Group, 2016
ISBN 10: 1482225662 ISBN 13: 9781482225662
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 75,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 210.
EUR 71,21
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 185.
Publicado por Taylor & Francis Group, 2016
ISBN 10: 1482225662 ISBN 13: 9781482225662
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 76,77
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 210.
EUR 76,00
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por Taylor & Francis Group, 2016
ISBN 10: 1482225662 ISBN 13: 9781482225662
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 80,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 210.
EUR 97,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 236 pages. 9.21x6.14x0.55 inches. In Stock.
Publicado por Apple Academic Press Inc., 2016
ISBN 10: 1482225662 ISBN 13: 9781482225662
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 114,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 511.
EUR 127,31
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 212 pages. 9.25x6.25x0.75 inches. In Stock.
EUR 115,70
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some ti.
EUR 142,89
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - This work addresses classification using mixture models broadly. Unlike traditional treatments of the subject that heavily focus on unsupervised approaches, this book gives attention to unsupervised, semi-supervised, and supervised classification paradigms. Case studies illustrate both non-Gaussian and Gaussian approaches to model selection.
Publicado por Taylor & Francis, Chapman And Hall/CRC, 2020
ISBN 10: 0367736950 ISBN 13: 9780367736958
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 60,80
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature.' (Douglas Steinley, University of Missouri)Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a clusterPaul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models. 236 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 57,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some ti.
Publicado por Taylor & Francis, Chapman And Hall/CRC, 2020
ISBN 10: 0367736950 ISBN 13: 9780367736958
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 69,04
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - 'This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature.' (Douglas Steinley, University of Missouri)Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a clusterPaul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.