Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (2)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición Más información

  • Nuevo (2)
  • Como nuevo, Excelente o Muy bueno (No hay ningún otro resultado que coincida con este filtro.)
  • Bueno o Aceptable (No hay ningún otro resultado que coincida con este filtro.)
  • Regular o Pobre (No hay ningún otro resultado que coincida con este filtro.)
  • Tal como se indica (No hay ningún otro resultado que coincida con este filtro.)

Encuadernación

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (No hay ningún otro resultado que coincida con este filtro.)
  • No impresión bajo demanda (2)

Idioma (1)

Precio

  • Cualquier precio 
  • Menos de EUR 20 (No hay ningún otro resultado que coincida con este filtro.)
  • EUR 20 a EUR 45 (No hay ningún otro resultado que coincida con este filtro.)
  • Más de EUR 45 
Intervalo de precios personalizado (EUR)

Gastos de envío gratis

  • Envío gratis a España (No hay ningún otro resultado que coincida con este filtro.)

Ubicación del vendedor

  • Ronald K. Pearson

    Publicado por Society for Industrial & Applied Mathematics,U.S., New York, 2020

    ISBN 10: 161197626X ISBN 13: 9781611976267

    Idioma: Inglés

    Librería: AussieBookSeller, Truganina, VIC, Australia

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 31,60 gastos de envío desde Australia a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. It has been estimated that as much as 80% of the total effort in a typical data analysis project is taken up with data preparation, including reconciling and merging data from different sources, identifying and interpreting various data anomalies, and selecting and implementing appropriate treatment strategies for the anomalies that are found. This book focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them.As both data sources and free, open-source data analysis software environments proliferate, more people and organizations are motivated to extract useful insights and information from data of many different kinds (e.g., numerical, categorical, and text). The book emphasizes the range of open-source tools available for identifying and treating data anomalies, mostly in R but also with several examples in Python.Mining Imperfect Data: With Examples in R and Python, Second Editionpresents a unified coverage of 10 different types of data anomalies (outliers, missing data, inliers, metadata errors, misalignment errors, thin levels in categorical variables, noninformative variables, duplicated records, coarsening of numerical data, and target leakage);includes an in-depth treatment of time-series outliers and simple nonlinear digital filtering strategies for dealing with them; andprovides a detailed introduction to several useful mathematical characteristics of important data characterizations that do not appear to be widely known among practitioners, such as functional equations and key inequalities. Focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Ronald K. Pearson

    Publicado por Society for Industrial & Applied Mathematics,U.S., New York, 2020

    ISBN 10: 161197626X ISBN 13: 9781611976267

    Idioma: Inglés

    Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 64,05 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. It has been estimated that as much as 80% of the total effort in a typical data analysis project is taken up with data preparation, including reconciling and merging data from different sources, identifying and interpreting various data anomalies, and selecting and implementing appropriate treatment strategies for the anomalies that are found. This book focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them.As both data sources and free, open-source data analysis software environments proliferate, more people and organizations are motivated to extract useful insights and information from data of many different kinds (e.g., numerical, categorical, and text). The book emphasizes the range of open-source tools available for identifying and treating data anomalies, mostly in R but also with several examples in Python.Mining Imperfect Data: With Examples in R and Python, Second Editionpresents a unified coverage of 10 different types of data anomalies (outliers, missing data, inliers, metadata errors, misalignment errors, thin levels in categorical variables, noninformative variables, duplicated records, coarsening of numerical data, and target leakage);includes an in-depth treatment of time-series outliers and simple nonlinear digital filtering strategies for dealing with them; andprovides a detailed introduction to several useful mathematical characteristics of important data characterizations that do not appear to be widely known among practitioners, such as functional equations and key inequalities. Focuses on the identification and treatment of data anomalies, including examples that highlight different types of anomalies, their potential consequences if left undetected and untreated, and options for dealing with them. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.