Librería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
EUR 20,00
Cantidad disponible: 4 disponibles
Añadir al carrito1984th ed. 15 x 23 cm. 256 pages. Paperback. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch.
Publicado por Dept. of Pure Mathematics, Australian National University, 1977
ISBN 10: 0708112943 ISBN 13: 9780708112946
Idioma: Inglés
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
EUR 47,51
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. *Price HAS BEEN REDUCED by 10% until Monday, Nov. 10 (weekend sale item)* 185 pp., softcover, previous owner's name inside the front cover, else very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Original o primera edición
EUR 66,76
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. 1st Edition. Used book that is in excellent condition. May show signs of wear or have minor defects.
Publicado por Dept. of Pure Mathematics, 1977
ISBN 10: 0708112943 ISBN 13: 9780708112946
Idioma: Inglés
Librería: Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Reino Unido
EUR 12,31
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Taping to spine and corners (protective), previous owners name inside front cover. Light tanning and foxing, all legible. Some fading to cover. Very little shelf wear.
Publicado por Birkhäuser, Boston, Basel, Stuttgart, 1984
ISBN 10: 3764331534 ISBN 13: 9783764331535
Idioma: Inglés
Librería: Emile Kerssemakers ILAB, Heerlen, Holanda
EUR 50,00
Cantidad disponible: 1 disponibles
Añadir al carrito24 x 17 cm, hardcover with dust jacket, xii, 240 pages, Text in English, very good/ fine condition, see picture. Monographs in Mathematics, vol. 80. ISBN's 3764331534 & 0817631534. 740g.
Publicado por Birkhäuser, Boston, 1984
Idioma: Inglés
Librería: Antiquariat Renner OHG, Albstadt, Alemania
Miembro de asociación: BOEV
EUR 60,00
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Sehr gut. Schutzumschlag. Boston, Birkhäuser 1984. gr.8°. XII, 240 p. Hardbound in dust jacket. Monographs in Mathematics, 80.- Name on flyleaf, otherwise in very good condition.
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 124,47
Cantidad disponible: 3 disponibles
Añadir al carritopaperback. Condición: Very Good.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 175,31
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 186,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Birkhauser, Boston, MA, 1984
ISBN 10: 0817631534 ISBN 13: 9780817631536
Idioma: Inglés
Librería: Lost Books, AUSTIN, TX, Estados Unidos de America
EUR 195,86
Cantidad disponible: 1 disponibles
Añadir al carritoTrade paperback. 1984 ed. Trade paperback (US). 240 p. Contains: Unspecified. Monographs in Mathematics, 80. Audience: General/trade. Very good in very good dust jacket. Hardcover. ISBN is correct. Light shelf wear to dust jacket. Text is unmarked.
EUR 153,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por 1977 Canberra, 1977
Librería: Antiquariat Thomas & Reinhard, Recklinghausen, NRW, Alemania
EUR 52,00
Cantidad disponible: 1 disponibles
Añadir al carritoHALBLEINEN, 185 Seiten, dies ist dies ist ein regulär ausgesondertes Bibliotheksexemplar aus einer wissenschaftlichen Bibliothek, keine Markierungen-Anstreichungen im Text, Einband in Transparentschutzfolie, Einbandränder geblichen, das Buch ist gut erhalten --- HalfLINEN, cover in foil, Lib.Ex., no marks, 185 pages, cover margins brightened, the book is in a good condition. Shipping to abroad insured with tracking number.
EUR 159,50
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Minimal Surfaces and Functions of Bounded Variation | Giusti | Taschenbuch | xii | Englisch | 1984 | Birkhäuser | EAN 9780817631536 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 244,48
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 256 1st Edition.
Publicado por Birkhäuser Boston, Birkhäuser Boston Jan 1984, 1984
ISBN 10: 0817631534 ISBN 13: 9780817631536
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR' as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 256 pp. Englisch.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 234,56
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 1984. 1984th Edition. paperback. . . . . .
Publicado por Birkhäuser Boston, Birkhäuser Boston, 1984
ISBN 10: 0817631534 ISBN 13: 9780817631536
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 188,90
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR' as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 248,39
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. Very Good. book.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 293,65
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 1984. 1984th Edition. paperback. . . . . . Books ship from the US and Ireland.
Publicado por Birkhäuser Boston Jan 1984, 1984
ISBN 10: 0817631534 ISBN 13: 9780817631536
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 181,89
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR' as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1]. 256 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 261,82
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 256 This item is printed on demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 263,85
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 256.