Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 26,78
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03423 9780387204307 Sprache: Englisch Gewicht in Gramm: 550.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 67,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag New York Inc., New York, NY, 2010
ISBN 10: 1441919139 ISBN 13: 9781441919137
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 69,43
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 66,02
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 70,15
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 68,89
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
EUR 70,14
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 93,51
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag New York Inc., New York, NY, 2004
ISBN 10: 038720430X ISBN 13: 9780387204307
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 95,86
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle. This text is an introduction to the theory of differentiable manifolds and fibre bundles. The only prerequisites are a solid background in calculus and linear algebra, together with some basic point-set topology. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 93,78
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 95,29
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 240.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 103,49
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 103,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 127,26
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 244.
Publicado por Springer New York, Springer US Nov 2010, 2010
ISBN 10: 1441919139 ISBN 13: 9781441919137
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 69,54
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is 'the same' n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch.
EUR 62,20
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Metric Structures in Differential Geometry | Gerard Walschap | Taschenbuch | viii | Englisch | 2010 | Humana | EAN 9781441919137 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer New York, Springer US, 2010
ISBN 10: 1441919139 ISBN 13: 9781441919137
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 72,88
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is 'the same' n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 139,54
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 126,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 117,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 148,31
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer New York, Springer US Mär 2004, 2004
ISBN 10: 038720430X ISBN 13: 9780387204307
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 96,29
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is 'the same' n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 236 pp. Englisch.
Publicado por Springer New York, Springer US, 2004
ISBN 10: 038720430X ISBN 13: 9780387204307
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 100,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is 'the same' n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.
Publicado por Springer-Verlag New York Inc., New York, NY, 2010
ISBN 10: 1441919139 ISBN 13: 9781441919137
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 136,14
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
EUR 170,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 161,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Publicado por Springer-Verlag New York Inc., New York, NY, 2004
ISBN 10: 038720430X ISBN 13: 9780387204307
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 190,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov ered, culminating in Stokes' theorem together with some applications. The stu dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle. This text is an introduction to the theory of differentiable manifolds and fibre bundles. The only prerequisites are a solid background in calculus and linear algebra, together with some basic point-set topology. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por New York, NY : Springer New York, 2004
ISBN 10: 038720430X ISBN 13: 9780387204307
Idioma: Inglés
Librería: Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Alemania
Original o primera edición
EUR 41,50
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoOriginalpappband. Condición: Wie neu. 1. Edition. ERSTAUSGABE. VIII, 226 S. : 15 Abbildungen. 23 cm FRISCHES, SEHR schönes Exemplar der ERSTAUSGABE. ( We offer a lot of books on PHYSICS and MATHEMATICS on stock in EXCELLENT shape). ( NEUDRUCK auf ANFRAGE: 97 Euro ) Sprache: Englisch Gewicht in Gramm: 505.
Publicado por Springer New York Nov 2010, 2010
ISBN 10: 1441919139 ISBN 13: 9781441919137
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 69,54
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers an introduction to the theory of differentiable manifolds and fiber bundles. It examines bundles from the point of view of metric differential geometry: Euclidean bundles, Riemannian connections, curvature, and Chern-Weil theory are discussed, including the Pontrjagin, Euler, and Chern characteristic classes of a vector bundle. These concepts are illustrated in detail for bundles over spheres. 240 pp. Englisch.
Publicado por Springer-Verlag New York Inc., 2010
ISBN 10: 1441919139 ISBN 13: 9781441919137
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 83,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 373.