Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Feldman's Books, Menlo Park, CA, Estados Unidos de America
EUR 52,47
Cantidad disponible: 1 disponibles
Añadir al carritoPaper Bound. Condición: Near Fine. First Edition. Clean, unmarked copy.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 59,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 22,90
Cantidad disponible: 1 disponibles
Añadir al carritoSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02794 3540960597 Sprache: Englisch Gewicht in Gramm: 1050.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,21
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 56,30
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 74,09
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 280.
EUR 77,31
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 280 pages. 9.10x5.90x0.50 inches. In Stock.
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer New York, Springer US, 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 58,39
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.
Idioma: Inglés
Publicado por Springer, Springer Nov 1984, 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation. 280 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 75,05
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 280 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc., 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 67,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 77,58
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 280.
Idioma: Inglés
Publicado por Springer New York, Springer US Nov 1984, 1984
ISBN 10: 0387960597 ISBN 13: 9780387960593
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f ¿ F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u ¿ DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 280 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 50,35
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Methods for Solving Incorrectly Posed Problems | V. A. Morozov | Taschenbuch | 257 S. | Englisch | 1984 | Springer | EAN 9780387960593 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.