Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 41,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Trafford Publishing 2006-12, 2006
ISBN 10: 1412003806 ISBN 13: 9781412003803
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 38,60
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 32,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
EUR 47,28
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Über den AutorDr. John H. Heinbockel is Professor Emeritus of Mathematics and Statistics from Old Dominion University, Norfolk, Virginia. He received his Ph.D. in applied mathematics from North Carolina State University in 1964. .
Publicado por Trafford Publishing Dez 2006, 2006
ISBN 10: 1412003806 ISBN 13: 9781412003803
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 54,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Mathematical Methods for Partial Differential Equations is an introduction in the use of various mathematical methods needed for solving linear partial differential equations. The material is suitable for a two semester course in partial differential equations for mathematicians, engineers, physicists, chemistry and science majors and is suitable for upper level college undergraduates or beginning graduate students.Chapter one reviews necessary background material from the subject area of ordinary differential equations and then develops solution techniques for some easy to solve partial differential equations. Chapter two introduces orthogonal functions and Sturm-Liouville systems. Chapter three utilizes orthogonal functions to develop Fourier series and Fourier integrals. The fourth, fifth and sixth chapters consider various applied engineering applications of partial differential equations. Selected applied topics are developed together with necessary solution methods associated with parabolic, hyperbolic and elliptic type partial differential equations. Chapter seven introduces transform methods for solving linear partial differential equations. Numerous examples associated with the Laplace, Fourier exponential, Fourier sine, Fourier cosine and selected finite Sturm-Liouville transforms are given. Chapter eight introduces Green's functions for ordinary differential equations and chapter nine finishes with applications of Green function techniques for solving linear partial differential equations.There are four Appendices. The Appendix A contains units of measurementsfrom the Système International d'Unitès along with some selected physical constants. The Appendix B contains solutions to selected exercises. The Appendix C lists mathematicians whose research has contributed to the area of partial differential equations. The Appendix D contains a short listing of integrals. The text has numerous illustrative worked examples and over 340 exercises.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 582 pp. Englisch.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 36,71
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 42,52
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 50,02
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 48,01
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1210.
Publicado por Trafford Publishing Dez 2006, 2006
ISBN 10: 1412003806 ISBN 13: 9781412003803
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 54,00
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Mathematical Methods for Partial Differential Equations is an introduction in the use of various mathematical methods needed for solving linear partial differential equations. The material is suitable for a two semester course in partial differential equations for mathematicians, engineers, physicists, chemistry and science majors and is suitable for upper level college undergraduates or beginning graduate students.Chapter one reviews necessary background material from the subject area of ordinary differential equations and then develops solution techniques for some easy to solve partial differential equations. Chapter two introduces orthogonal functions and Sturm-Liouville systems. Chapter three utilizes orthogonal functions to develop Fourier series and Fourier integrals. The fourth, fifth and sixth chapters consider various applied engineering applications of partial differential equations. Selected applied topics are developed together with necessary solution methods associated with parabolic, hyperbolic and elliptic type partial differential equations. Chapter seven introduces transform methods for solving linear partial differential equations. Numerous examples associated with the Laplace, Fourier exponential, Fourier sine, Fourier cosine and selected finite Sturm-Liouville transforms are given. Chapter eight introduces Green's functions for ordinary differential equations and chapter nine finishes with applications of Green function techniques for solving linear partial differential equations.There are four Appendices. The Appendix A contains units of measurementsfrom the Système International d'Unitès along with some selected physical constants. The Appendix B contains solutions to selected exercises. The Appendix C lists mathematicians whose research has contributed to the area of partial differential equations. The Appendix D contains a short listing of integrals. The text has numerous illustrative worked examples and over 340 exercises. 582 pp. Englisch.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 59,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Mathematical Methods for Partial Differential Equations is an introduction in the use of various mathematical methods needed for solving linear partial differential equations. The material is suitable for a two semester course in partial differential equations for mathematicians, engineers, physicists, chemistry and science majors and is suitable for upper level college undergraduates or beginning graduate students.Chapter one reviews necessary background material from the subject area of ordinary differential equations and then develops solution techniques for some easy to solve partial differential equations. Chapter two introduces orthogonal functions and Sturm-Liouville systems. Chapter three utilizes orthogonal functions to develop Fourier series and Fourier integrals. The fourth, fifth and sixth chapters consider various applied engineering applications of partial differential equations. Selected applied topics are developed together with necessary solution methods associated with parabolic, hyperbolic and elliptic type partial differential equations. Chapter seven introduces transform methods for solving linear partial differential equations. Numerous examples associated with the Laplace, Fourier exponential, Fourier sine, Fourier cosine and selected finite Sturm-Liouville transforms are given. Chapter eight introduces Green's functions for ordinary differential equations and chapter nine finishes with applications of Green function techniques for solving linear partial differential equations.There are four Appendices. The Appendix A contains units of measurementsfrom the Système International d'Unitès along with some selected physical constants. The Appendix B contains solutions to selected exercises. The Appendix C lists mathematicians whose research has contributed to the area of partial differential equations. The Appendix D contains a short listing of integrals. The text has numerous illustrative worked examples and over 340 exercises.