Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 52,31
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Springer International Publishing AG, Cham, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 81,92
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 79,62
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer International Publishing, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 82,04
Cantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Idioma: Inglés
Publicado por Springer International Publishing, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 76,63
Cantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 85,84
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 76,62
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 82,58
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 81,73
Cantidad disponible: 3 disponibles
Añadir al carritopaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 86,66
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 105,65
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 98,41
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 582 pages. 9.25x6.10x9.25 inches. In Stock.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 107,22
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
EUR 69,73
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: NEW.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 118,86
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 2023rd edition NO-PA16APR2015-KAP.
Idioma: Inglés
Publicado por Springer International Publishing AG, CH, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 124,01
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. 2023 ed. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 111,82
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 126,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer International Publishing AG, Cham, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 131,34
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Idioma: Inglés
Publicado por Springer International Publishing AG, Cham, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 100,06
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 135,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 123,16
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 123,15
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 139,99
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 89,62
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Jul 2024, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 90,94
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 584 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer International Publishing, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 90,94
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation.In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 140,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 57,18
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Seiten: 584 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Idioma: Inglés
Publicado por Springer International Publishing AG, CH, 2024
ISBN 10: 3031267141 ISBN 13: 9783031267147
Librería: Rarewaves.com UK, London, Reino Unido
EUR 117,55
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. 2023 ed. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.