Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 181,18
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 181,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 197,66
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 192,80
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 206,25
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 204,33
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 202,45
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 216,36
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 259,46
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 384 pages. 9.18x6.12x9.21 inches. In Stock.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2024
ISBN 10: 1032737530 ISBN 13: 9781032737539
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 199,98
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book discusses state-of-the-art reviews of the existing machine learning techniques and algorithms including hybridizations and optimizations. It covers applications of machine learning via artificial intelligence (AI) prediction tools, discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, pattern recognition approaches to functional magnetic resonance imaging, image and speech recognition, automatic language translation, medical diagnostic, stock market prediction, traffic prediction, and product automation.Features:Focuses on hybridization and optimization of machine learning techniquesReviews supervised, unsupervised, and reinforcement learning using case study-based applicationsCovers the latest machine learning applications in as diverse domains as the Internet of Things, data science, cloud computing, and distributed and parallel computingExplains computing models using real-world examples and dataset-based experimentsIncludes case study-based explanations and usage for machine learning technologies and applicationsThis book is aimed at graduate students and researchers in machine learning, artificial intelligence, and electrical engineering. This book discusses state-of-the-art reviews of the existing machine-learning techniques and algorithms including hybridizations and optimizations. It is aimed at graduate students and researchers in machine learning, artificial intelligence, and electrical engineering. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: moluna, Greven, Alemania
EUR 168,11
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Tanvir Habib Sardar is an Assistant Professor in the department of CSE at GITAM University, Bengaluru campus. He has more than fifteen years of experience in industry and academia. His research domain is big data, machine learning, fuzzy logic, and distr.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2024
ISBN 10: 1032737530 ISBN 13: 9781032737539
Librería: CitiRetail, Stevenage, Reino Unido
EUR 223,72
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book discusses state-of-the-art reviews of the existing machine learning techniques and algorithms including hybridizations and optimizations. It covers applications of machine learning via artificial intelligence (AI) prediction tools, discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, pattern recognition approaches to functional magnetic resonance imaging, image and speech recognition, automatic language translation, medical diagnostic, stock market prediction, traffic prediction, and product automation.Features:Focuses on hybridization and optimization of machine learning techniquesReviews supervised, unsupervised, and reinforcement learning using case study-based applicationsCovers the latest machine learning applications in as diverse domains as the Internet of Things, data science, cloud computing, and distributed and parallel computingExplains computing models using real-world examples and dataset-based experimentsIncludes case study-based explanations and usage for machine learning technologies and applicationsThis book is aimed at graduate students and researchers in machine learning, artificial intelligence, and electrical engineering. This book discusses state-of-the-art reviews of the existing machine-learning techniques and algorithms including hybridizations and optimizations. It is aimed at graduate students and researchers in machine learning, artificial intelligence, and electrical engineering. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2024
ISBN 10: 1032737530 ISBN 13: 9781032737539
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 259,58
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book discusses state-of-the-art reviews of the existing machine learning techniques and algorithms including hybridizations and optimizations. It covers applications of machine learning via artificial intelligence (AI) prediction tools, discovery of drugs, neuroscience, diagnosis in multiple imaging modalities, pattern recognition approaches to functional magnetic resonance imaging, image and speech recognition, automatic language translation, medical diagnostic, stock market prediction, traffic prediction, and product automation.Features:Focuses on hybridization and optimization of machine learning techniquesReviews supervised, unsupervised, and reinforcement learning using case study-based applicationsCovers the latest machine learning applications in as diverse domains as the Internet of Things, data science, cloud computing, and distributed and parallel computingExplains computing models using real-world examples and dataset-based experimentsIncludes case study-based explanations and usage for machine learning technologies and applicationsThis book is aimed at graduate students and researchers in machine learning, artificial intelligence, and electrical engineering. This book discusses state-of-the-art reviews of the existing machine-learning techniques and algorithms including hybridizations and optimizations. It is aimed at graduate students and researchers in machine learning, artificial intelligence, and electrical engineering. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: preigu, Osnabrück, Alemania
EUR 218,10
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Machine Learning Hybridization and Optimization for Intelligent Applications | Tanvir Habib Sardar (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2024 | CRC Press | EAN 9781032737539 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 260,55
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book discusses state-of-the-art reviews of the existing machine-learning techniques and algorithms including hybridizations and optimizations. It is aimed at graduate students and researchers in machine learning, artificial intelligence, and electrical engineering.