Librería: Goodwill Books, Hillsboro, OR, Estados Unidos de America
EUR 12,00
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: acceptable. Fairly worn, but readable and intact. If applicable: Dust jacket, disc or access code may not be included.
Publicado por O'Reilly Media (edition 1), 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
EUR 18,41
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting.
Librería: upickbook, Daly City, CA, Estados Unidos de America
EUR 29,29
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 36,32
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GoldBooks, Denver, CO, Estados Unidos de America
EUR 35,22
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: new.
Publicado por O'Reilly Media 11/3/2020, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 42,59
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops. Book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 42,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 45,22
Cantidad disponible: 15 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 43,16
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 42,24
Cantidad disponible: 15 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 50,53
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly.
Publicado por O'Reilly Media, Sebastopol, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 52,30
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 42,23
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 47,71
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. In.
EUR 63,00
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 52,93
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2020. Paperback. . . . . .
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 49,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 50,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 65,07
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2020. Paperback. . . . . . Books ship from the US and Ireland.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 72,41
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por Oreilly & Associates Inc, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 66,99
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 400 pages. 9.25x7.00x1.00 inches. In Stock.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 79,99
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Publicado por O'reilly Media Okt 2020, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania
EUR 65,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. 390 pp. Englisch.
Publicado por O'reilly Media Okt 2020, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 65,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. 390 pp. Englisch.
Publicado por O'reilly Media Okt 2020, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: Wegmann1855, Zwiesel, Alemania
EUR 65,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 52,46
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly.
Librería: moluna, Greven, Alemania
EUR 51,60
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the ex.
Publicado por O'Reilly Media, Sebastopol, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 79,89
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: preigu, Osnabrück, Alemania
EUR 53,25
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Machine Learning Design Patterns | Solutions to Common Challenges in Data Preparation, Model Building, and MLOps | Valliappa Lakshmanan (u. a.) | Taschenbuch | Kartoniert / Broschiert | Englisch | 2020 | O'Reilly Media | EAN 9781098115784 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Publicado por O'reilly Media Okt 2020, 2020
ISBN 10: 1098115783 ISBN 13: 9781098115784
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 65,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 390 pp. Englisch.