Librería: Anybook.com, Lincoln, Reino Unido
EUR 2,98
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Poor. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In poor condition, suitable as a reading copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,700grams, ISBN:9780126851205.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2019
ISBN 10: 6139452821 ISBN 13: 9786139452828
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 61,60
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2019
ISBN 10: 6139452821 ISBN 13: 9786139452828
Librería: preigu, Osnabrück, Alemania
EUR 36,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Query Based Text Summarization using Machine learning Approach | Learning Approaches | Zarah Zainab (u. a.) | Taschenbuch | 80 S. | Englisch | 2019 | LAP LAMBERT Academic Publishing | EAN 9786139452828 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2019
ISBN 10: 6139452821 ISBN 13: 9786139452828
Librería: Buchpark, Trebbin, Alemania
EUR 20,76
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2019
ISBN 10: 6139452821 ISBN 13: 9786139452828
Librería: Buchpark, Trebbin, Alemania
EUR 20,76
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization.
Idioma: Inglés
Publicado por Novas Edições Acadêmicas, 2018
ISBN 10: 6202188545 ISBN 13: 9786202188548
Librería: preigu, Osnabrück, Alemania
EUR 59,40
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Emotions Detection in Music Lyrics | Using Machine Learning and Keyword-Based Approaches | Ricardo Malheiro | Taschenbuch | Englisch | 2018 | Novas Edições Acadêmicas | EAN 9786202188548 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Librería: Buchmarie, Darmstadt, Alemania
EUR 191,59
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good.
ISBN 10: 7521829239 ISBN 13: 9787521829235
Librería: liu xing, Nanjing, JS, China
EUR 92,27
Cantidad disponible: 3 disponibles
Añadir al carritopaperback. Condición: New. Paperback. Pub Date: 2021-09-01 Pages: 324 Language: Chinese Publisher: Economic Science Press Economic Policy Evaluation and Forecast: A Method Based on Causal Inference and Machine Learning uses the causal inference and prediction in the evaluation and prediction of economic policy effects The machine learning method is the main research object. and the specific content can be divided into two main parts. The first part is the identification strategy of policy project effect evaluation. the.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2019
ISBN 10: 6139452821 ISBN 13: 9786139452828
Librería: Majestic Books, Hounslow, Reino Unido
EUR 61,26
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2019
ISBN 10: 6139452821 ISBN 13: 9786139452828
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 62,50
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2019
ISBN 10: 6139452821 ISBN 13: 9786139452828
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 40,89
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Extraction of relevant information on a specific query from rapidly growing data is a concern for quiet time in order to scan and analyze data from all the related documents. Therefore, text summarization is paramount research area these days. It is about to find most relevant information from single or multi-documents. A reasonable amount of work is done in this area to overcome extensive searching and to reduce the time required. The knowledge-based and machine learning are the two methods for query-based text summarization where Machine learning approaches are mostly used for calculating probabilistic feature using Natural Language Processing (NLP) tools and techniques for both supervised and unsupervised learning. In the first part of this research work include to identify and analyze machine learning approaches for query-based text summarization for finding a useful summary for the users as specified by their need. In the second part, a comprehensive discussion is done to present the internal working mechanism of machine learning approaches for query-based text summarization.
Idioma: Inglés
Publicado por Novas Edições Acadêmicas, 2018
ISBN 10: 6202188545 ISBN 13: 9786202188548
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 70,74
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Search of music through emotions is one of the main criteria utilized by users on Internet. Real-world music databases from sites like AllMusic or Last.fm grow larger and larger on a daily basis, which requires a tremendous amount of manual work for keeping them updated. As manual annotation with emotion tags is an expensive time-consuming task, we need automatic Music Emotion Recognition systems (MER). This book is focused on the task of automatic detection of emotions in music lyrics and in the importance of the different music dimensions (e.g., audio, lyrics) for the task of detection of emotions in music. In this book, different emotion detection approaches are analyzed and a new system is proposed. Topics such as relation between music features and emotions and music emotion variation detection are covered, as well as, identification of the most important music features to each emotion. This analysis contributes to unify the current efforts in this area. It should be particularly useful to researchers working in MER in general and in detection of emotions in music lyrics or general text in particular and as support to (under)graduate courses related to these topics.