Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2008
ISBN 10: 3540200401 ISBN 13: 9783540200406
Idioma: Inglés
Librería: Ammareal, Morangis, Francia
EUR 3,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Edition 2008. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slight signs of wear on the cover. Edition 2008. Ammareal gives back up to 15% of this item's net price to charity organizations.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 3540200401 ISBN 13: 9783540200406
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 10,98
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,49
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 60,11
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 56,44
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoHardback or Cased Book. Condición: New. Logical and Relational Learning 1.8. Book.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642057489 ISBN 13: 9783642057489
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Iusethetermlogicalandrelationallearning torefertothesub eldofarti cial intelligence,machinelearninganddataminingthatisconcernedwithlearning in expressive logical or relational representations. It is the union of inductive logic programming, (statistical) relational learning and multi-relational data mining, which all have contributed techniques for learning from data in re- tional form. Even though some early contributions to logical and relational learning are about forty years old now, it was only with the advent of - ductive logic programming in the early 1990s that the eld became popular. Whereas initial work was often concerned with logical (or logic programming) issues,thefocushasrapidlychangedtothediscoveryofnewandinterpretable knowledge from structured data, often in the form of rules, and soon imp- tant successes in applications in domains such as bio- and chemo-informatics and computational linguistics were realized. Today, the challenges and opp- tunities of dealing with structured data and knowledge have been taken up by the arti cial intelligence community at large and form the motivation for a lot of ongoing research. Indeed, graph, network and multi-relational data mining are now popular themes in data mining, and statistical relational learning is receiving a lot of attention in the machine learning and uncertainty in art- cial intelligence communities. In addition, the range of tasks for which logical and relational techniques have been developed now covers almost all machine learning and data mining tasks.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg, 2008
ISBN 10: 3540200401 ISBN 13: 9783540200406
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Iusethetermlogicalandrelationallearning torefertothesub eldofarti cial intelligence,machinelearninganddataminingthatisconcernedwithlearning in expressive logical or relational representations. It is the union of inductive logic programming, (statistical) relational learning and multi-relational data mining, which all have contributed techniques for learning from data in re- tional form. Even though some early contributions to logical and relational learning are about forty years old now, it was only with the advent of - ductive logic programming in the early 1990s that the eld became popular. Whereas initial work was often concerned with logical (or logic programming) issues,thefocushasrapidlychangedtothediscoveryofnewandinterpretable knowledge from structured data, often in the form of rules, and soon imp- tant successes in applications in domains such as bio- and chemo-informatics and computational linguistics were realized. Today, the challenges and opp- tunities of dealing with structured data and knowledge have been taken up by the arti cial intelligence community at large and form the motivation for a lot of ongoing research. Indeed, graph, network and multi-relational data mining are now popular themes in data mining, and statistical relational learning is receiving a lot of attention in the machine learning and uncertainty in art- cial intelligence communities. In addition, the range of tasks for which logical and relational techniques have been developed now covers almost all machine learning and data mining tasks.
EUR 54,10
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 70,38
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 60,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Sep 2008, 2008
ISBN 10: 3540200401 ISBN 13: 9783540200406
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Iusethetermlogicalandrelationallearning torefertothesub eldofarti cial intelligence,machinelearninganddataminingthatisconcernedwithlearning in expressive logical or relational representations. It is the union of inductive logic programming, (statistical) relational learning and multi-relational data mining, which all have contributed techniques for learning from data in re- tional form. Even though some early contributions to logical and relational learning are about forty years old now, it was only with the advent of - ductive logic programming in the early 1990s that the eld became popular. Whereas initial work was often concerned with logical (or logic programming) issues,thefocushasrapidlychangedtothediscoveryofnewandinterpretable knowledge from structured data, often in the form of rules, and soon imp- tant successes in applications in domains such as bio- and chemo-informatics and computational linguistics were realized. Today, the challenges and opp- tunities of dealing with structured data and knowledge have been taken up by the arti cial intelligence community at large and form the motivation for a lot of ongoing research. Indeed, graph, network and multi-relational data mining are now popular themes in data mining, and statistical relational learning is receiving a lot of attention in the machine learning and uncertainty in art- cial intelligence communities. In addition, the range of tasks for which logical and relational techniques have been developed now covers almost all machine learning and data mining tasks.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Feb 2010, 2010
ISBN 10: 3642057489 ISBN 13: 9783642057489
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Iusethetermlogicalandrelationallearning torefertothesub eldofarti cial intelligence,machinelearninganddataminingthatisconcernedwithlearning in expressive logical or relational representations. It is the union of inductive logic programming, (statistical) relational learning and multi-relational data mining, which all have contributed techniques for learning from data in re- tional form. Even though some early contributions to logical and relational learning are about forty years old now, it was only with the advent of - ductive logic programming in the early 1990s that the eld became popular. Whereas initial work was often concerned with logical (or logic programming) issues,thefocushasrapidlychangedtothediscoveryofnewandinterpretable knowledge from structured data, often in the form of rules, and soon imp- tant successes in applications in domains such as bio- and chemo-informatics and computational linguistics were realized. Today, the challenges and opp- tunities of dealing with structured data and knowledge have been taken up by the arti cial intelligence community at large and form the motivation for a lot of ongoing research. Indeed, graph, network and multi-relational data mining are now popular themes in data mining, and statistical relational learning is receiving a lot of attention in the machine learning and uncertainty in art- cial intelligence communities. In addition, the range of tasks for which logical and relational techniques have been developed now covers almost all machine learning and data mining tasks.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 3642057489 ISBN 13: 9783642057489
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 79,94
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 388 pages. 9.00x6.00x0.91 inches. In Stock.
Publicado por Springer-Verlag New York Inc, 2008
ISBN 10: 3540200401 ISBN 13: 9783540200406
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 82,86
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 388 pages. German language. 9.45x6.38x1.02 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 53,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 111,89
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 102,38
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 102,38
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
EUR 132,86
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: BennettBooksLtd, North Las Vegas, NV, Estados Unidos de America
EUR 112,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: New. In shrink wrap. Looks like an interesting title!
Publicado por Springer Berlin Heidelberg Feb 2010, 2010
ISBN 10: 3642057489 ISBN 13: 9783642057489
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning. 404 pp. Englisch.
Publicado por Springer Berlin Heidelberg Sep 2008, 2008
ISBN 10: 3540200401 ISBN 13: 9783540200406
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning. 404 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642057489 ISBN 13: 9783642057489
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 47,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First textbook on multirelational data mining and inductive logic programming This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and e.
Publicado por Springer Berlin Heidelberg, 2008
ISBN 10: 3540200401 ISBN 13: 9783540200406
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 47,23
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First textbook on multirelational data mining and inductive logic programming This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and e.