Publicado por Logos Verlag Berlin GmbH, 2015
ISBN 10: 3832541187 ISBN 13: 9783832541187
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 59,05
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 83,82
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2015. Paperback. . . . . .
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 74,69
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: ISD LLC, Bristol, CT, Estados Unidos de America
EUR 53,78
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritopaperback. Condición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 101,59
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2015. Paperback. . . . . . Books ship from the US and Ireland.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 97,43
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New.
Publicado por Logos Verlag Berlin GmbH, Berlin, 2015
ISBN 10: 3832541187 ISBN 13: 9783832541187
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 74,93
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This thesis considers the linear-quadratic optimal control problem for differential-algebraic systems. In this first part, a complete theoretical analysis of this problem is presented. The basis is a new differential-algebraic version of the Kalman-Yakubovich-Popov (KYP) lemma. One focus is the analysis of the solution structure of the associated descriptor KYP inequality. In particular, rank-minimizing, stabilizing, and extremal solutions are characterized which gives a deep insight into the structure of the problem. Further contributions include new relations of the descriptor KYP inequality to structured matrix pencils, conditions for the existence of nonpositive solutions, and the application of the new theory to the characterization of dissipative systems and the factorization of rational matrix-valued functions. The second part of this thesis focuses on robustness questions, i.e., the influence of perturbations on system properties like dissipativity and stability is discussed. Characterizations for the distance of a dissipative systems to the set of non-dissipative systems are given which lead to a numerical method for computing this distance.Furthermore, the problem of computing the H-infinity-norm of a large-scale differential-algebraic system is considered. Two approaches for this computation are introduced and compared to each other. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Logos Verlag Berlin GmbH, Berlin, 2015
ISBN 10: 3832541187 ISBN 13: 9783832541187
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 131,23
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This thesis considers the linear-quadratic optimal control problem for differential-algebraic systems. In this first part, a complete theoretical analysis of this problem is presented. The basis is a new differential-algebraic version of the Kalman-Yakubovich-Popov (KYP) lemma. One focus is the analysis of the solution structure of the associated descriptor KYP inequality. In particular, rank-minimizing, stabilizing, and extremal solutions are characterized which gives a deep insight into the structure of the problem. Further contributions include new relations of the descriptor KYP inequality to structured matrix pencils, conditions for the existence of nonpositive solutions, and the application of the new theory to the characterization of dissipative systems and the factorization of rational matrix-valued functions. The second part of this thesis focuses on robustness questions, i.e., the influence of perturbations on system properties like dissipativity and stability is discussed. Characterizations for the distance of a dissipative systems to the set of non-dissipative systems are given which lead to a numerical method for computing this distance.Furthermore, the problem of computing the H-infinity-norm of a large-scale differential-algebraic system is considered. Two approaches for this computation are introduced and compared to each other. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.