Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 72,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 85,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Publicado por Springer Berlin Heidelberg, 2007
ISBN 10: 3540684786 ISBN 13: 9783540684787
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 90,55
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 256.
EUR 92,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 256 Illus.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 95,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 256.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 103,63
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 103,63
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 115,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Berlin Heidelberg, 2007
ISBN 10: 3540684786 ISBN 13: 9783540684787
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank lters where the main emphasis is put on matrix-valued lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener lter, i.e., a reduced-rank Wiener lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di erent elds of mathematics, viz., statistical signal processing and numerical linear algebra.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642088031 ISBN 13: 9783642088032
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank lters where the main emphasis is put on matrix-valued lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener lter, i.e., a reduced-rank Wiener lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di erent elds of mathematics, viz., statistical signal processing and numerical linear algebra.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 120,94
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 121,32
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Jul 2007, 2007
ISBN 10: 3540684786 ISBN 13: 9783540684787
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank lters where the main emphasis is put on matrix-valued lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener lter, i.e., a reduced-rank Wiener lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di erent elds of mathematics, viz., statistical signal processing and numerical linear algebra.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 256 pp. Englisch.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642088031 ISBN 13: 9783642088032
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank lters where the main emphasis is put on matrix-valued lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener lter, i.e., a reduced-rank Wiener lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di erent elds of mathematics, viz., statistical signal processing and numerical linear algebra.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 256 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 139,70
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 256.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 146,42
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Berlin Heidelberg, 2007
ISBN 10: 3642088031 ISBN 13: 9783642088032
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 151,20
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 251 pages. 9.25x6.10x0.58 inches. In Stock.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 152,50
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 232 pages. 9.25x6.25x0.75 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2010
ISBN 10: 3642088031 ISBN 13: 9783642088032
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Original o primera edición
EUR 105,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank ?lters where the main emphasis is put on matrix-valued ?lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener ?lter, i.e., a reduced-rank Wiener ?lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener ?lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener ?lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di?erent ?elds of mathematics, viz., statistical signal processing and numerical linear algebra. This book focuses linear estimation theory, which is essential for effective signal processing. The first section offers a comprehensive overview of key methods like reduced-rank signal processing and Krylov subspace methods of numerical mathematics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2007
ISBN 10: 3540684786 ISBN 13: 9783540684787
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 117,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank ?lters where the main emphasis is put on matrix-valued ?lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener ?lter, i.e., a reduced-rank Wiener ?lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener ?lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener ?lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di?erent ?elds of mathematics, viz., statistical signal processing and numerical linear algebra. Focuses linear estimation theory, which is essential for effective signal processing. This book offers a comprehensive overview of key methods like reduced-rank signal processing and Krylov subspace methods of numerical mathematics. It also presents the relationship between statistical signal processing and numerical mathematics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2010
ISBN 10: 3642088031 ISBN 13: 9783642088032
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 188,20
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank ?lters where the main emphasis is put on matrix-valued ?lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener ?lter, i.e., a reduced-rank Wiener ?lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener ?lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener ?lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di?erent ?elds of mathematics, viz., statistical signal processing and numerical linear algebra. This book focuses linear estimation theory, which is essential for effective signal processing. The first section offers a comprehensive overview of key methods like reduced-rank signal processing and Krylov subspace methods of numerical mathematics. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2007
ISBN 10: 3540684786 ISBN 13: 9783540684787
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 191,53
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank ?lters where the main emphasis is put on matrix-valued ?lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener ?lter, i.e., a reduced-rank Wiener ?lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener ?lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener ?lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di?erent ?elds of mathematics, viz., statistical signal processing and numerical linear algebra. Focuses linear estimation theory, which is essential for effective signal processing. This book offers a comprehensive overview of key methods like reduced-rank signal processing and Krylov subspace methods of numerical mathematics. It also presents the relationship between statistical signal processing and numerical mathematics. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642088031 ISBN 13: 9783642088032
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Comprehensive overview of linear estimation algorithmsThis book focuses linear estimation theory, which is essential for effective signal processing. The first section offers a comprehensive overview of key methods like reduced-rank signal pro.
Publicado por Springer Berlin Heidelberg, 2007
ISBN 10: 3540684786 ISBN 13: 9783540684787
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Comprehensive overview of linear estimation algorithmsThis book focuses linear estimation theory, which is essential for effective signal processing. The first section offers a comprehensive overview of key methods like reduced-rank signal pro.
Publicado por Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642088031 ISBN 13: 9783642088032
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses linear estimation theory, which is essential for effective signal processing. The first section offers a comprehensive overview of key methods like reduced-rank signal processing and Krylov subspace methods of numerical mathematics. Also, the relationship between statistical signal processing and numerical mathematics is presented. In the second part, the theory is applied to iterative multiuser detection receivers (Turbo equalization) which are typically desired in wireless communications systems. 256 pp. Englisch.
Publicado por Springer Berlin Heidelberg Jul 2007, 2007
ISBN 10: 3540684786 ISBN 13: 9783540684787
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses linear estimation theory, which is essential for effective signal processing. The first section offers a comprehensive overview of key methods like reduced-rank signal processing and Krylov subspace methods of numerical mathematics. Also, the relationship between statistical signal processing and numerical mathematics is presented. In the second part, the theory is applied to iterative multiuser detection receivers (Turbo equalization) which are typically desired in wireless communications systems. 256 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 146,14
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 256 94 Illus.