Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 167,77
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 168,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 156,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 156,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 189,22
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 221,73
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 320.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 222,94
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 324.
EUR 150,15
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Limit Theorems for the Riemann Zeta-Function | Antanas Laurincikas | Taschenbuch | xiv | Englisch | 2010 | Springer Netherland | EAN 9789048146475 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer Netherlands, Springer Netherlands, 2010
ISBN 10: 904814647X ISBN 13: 9789048146475
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 179,61
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
Publicado por Springer Netherlands, Springer Netherlands, 1995
ISBN 10: 0792338243 ISBN 13: 9780792338246
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 179,61
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 247,14
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 312 pages. 9.25x6.10x0.73 inches. In Stock.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 255,89
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Publicado por Springer Netherlands Dez 2010, 2010
ISBN 10: 904814647X ISBN 13: 9789048146475
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 167,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B. 324 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 144,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects.
Librería: moluna, Greven, Alemania
EUR 144,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects.
Librería: preigu, Osnabrück, Alemania
EUR 150,40
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Limit Theorems for the Riemann Zeta-Function | Antanas Laurincikas | Buch | xiv | Englisch | 1995 | Springer Netherland | EAN 9780792338246 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Publicado por Springer Netherlands, Springer Netherlands Dez 2010, 2010
ISBN 10: 904814647X ISBN 13: 9789048146475
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 324 pp. Englisch.
Publicado por Springer Netherlands, Springer Netherlands Nov 1995, 1995
ISBN 10: 0792338243 ISBN 13: 9780792338246
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 171,19
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 324 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 235,46
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 324 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 236,21
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 320 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 238,27
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 320.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 238,84
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 324.
Publicado por Springer Netherlands Nov 1995, 1995
ISBN 10: 0792338243 ISBN 13: 9780792338246
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 239,68
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B. 324 pp. Englisch.