Publicado por American Mathematical Society, 2009
ISBN 10: 082184699X ISBN 13: 9780821846995
Idioma: Inglés
Librería: Better World Books: West, Reno, NV, Estados Unidos de America
EUR 37,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages.
Publicado por American Mathematical Society, 2009
ISBN 10: 082184699X ISBN 13: 9780821846995
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 76,13
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. xii + 234 Illus.
Publicado por American Mathematical Society, 2009
ISBN 10: 082184699X ISBN 13: 9780821846995
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 83,66
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. xii + 234.
Publicado por Universities Press, 2020
Librería: Vedams eBooks (P) Ltd, New Delhi, India
EUR 33,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoft cover. Condición: New. Contents: Preface. 1. Preface to the English edition. 2. The algebra of observables in classical mechanics. 3. States. 4. Liouville s theorem, and two pictures of motion in classical mechanics. 5. Physical bases of quantum mechanics. 6. A finite-dimensional model of quantum mechanics. 7. States in quantum mechanics. 8. Heisenberg uncertainty relations. 9. Physical meaning of the eigenvalues and eigenvectors of observables. 10. Two pictures of motion in quantum mechanics. The Schrödinger equation. Stationary states. 11. Quantum mechanics of real systems. The Heisenberg commutation relations. 12. Coordinate and momentum representations. 13. Eigenfunctions of the operators Q and P. 14. The energy, the angular momentum, and other examples of observables. 15. The interconnection between quantum and classical mechanics. Passage to the limit from quantum mechanics to classical mechanics. 16. One-dimensional problems of quantum mechanics. A free one-dimensional particle. 17. The harmonic oscillator. 18. The problem of the oscillator in the coordinate representation. 19. Representation of the states of a one-dimensional particle in the sequence space l2. 20. Representation of the states for a one-dimensional particle in the space D of entire analytic functions. 21. The general case of one-dimensional motion. 22. Three-dimensional problems in quantum mechanics. A three-dimensional free particle. 23. A three-dimensional particle in a potential field. 24. Angular momentum. 25. The rotation group. 26. Representations of the rotation group. 27. Spherically symmetric operators. 28. Representation of rotations by 2×2 unitary matrices. 29. Representation of the rotation group on a space of entire analytic functions of two complex variables. 30. Uniqueness of the representations Dj. 31. Representations of the rotation group on the space L2(S2) Spherical functions. 32. The radial Schrödinger equation. 33. The hydrogen atom. The alkali metal atoms. 34. Perturbation theory. 35. The variational principle. 36. Scattering theory. Physical formulation of the problem. 37. Scattering of a one-dimensional particle by a potential barrier. 38. Physical meaning of the solutions ? 1 and ? 2. 39. Scattering by a rectangular barrier.40. Scattering by a potential center. This book is based on notes from the course developed and taught for more than 30 years at the Department of Mathematics of Leningrad University. The goal of the course was to present the basics of quantum mechanics and its mathematical content to students in mathematics. This book differs from the majority of other textbooks on the subject in that much more attention is paid to general principles of quantum mechanics. In particular, the authors describe in detail the relation between classical and quantum mechanics. While selecting particular topics, the authors emphasize those that are related to interesting mathematical theories. In particular, the book contains a discussion of problems related to group representation theory and to scattering theory. This book is rather elementary and concise, and it does not require prerequisites beyond the standard undergraduate mathematical curriculum. It is aimed at giving a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.
Publicado por American Mathematical Society, 2009
ISBN 10: 082184699X ISBN 13: 9780821846995
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 78,42
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Año de publicación: 2009
Librería: Libreria Anticuaria Camino de Santiago, León - Madrid, España
EUR 26,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Bueno. 66026 Faddeev, L. D.; Yakubovskii, O. A. 2009 AMS, 2009. 234 págs. 14x22 Física nuclear,Física cuántica,Matemáticas,Historia y filosofía de la Ciencia SOLICITE NUESTRO CATÁLOGO DE FÍSICA, MATEMÁTICAS Y CIENCIAS: Philosophy Of Science, History Of Science, Set Theory And Mathematical Logic, Algebra, Mathematical Analysis, Functional Analysis, Probability And Statistics, Numerical Calculus, Mathematical-Physics, Newtonian Mechanics, Analytical Mechanics, Electromagnetism And Electromagnetic Field Theory, Relativity Special, General Relativity, Non-Relativistic Quantum Mechanics, Thermodynamics And Statistical Physics, Atomic And Nuclear Physics, Condensed Matter Theory, Quantum Field Theory, Elementary Particle Physics, Cosmology.