Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 13,81
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 10,03
Cantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Good. Book is bent.
Librería: Magus Books Seattle, Seattle, WA, Estados Unidos de America
EUR 17,32
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: VG. used hardcover copy in illustrated boards, no jacket, as issued. light shelfwear, corners perhaps slightly bumped. pages and binding are clean, straight and tight. there are no marks to the text or other serious flaws.
Librería: GoldBooks, Denver, CO, Estados Unidos de America
EUR 31,20
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: new.
Librería: BennettBooksLtd, Los Angeles, CA, Estados Unidos de America
EUR 76,58
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New. In shrink wrap. Looks like an interesting title!
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
EUR 85,47
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Publicado por Kluwer Academic Publishers, 2001
ISBN 10: 079237679X ISBN 13: 9780792376798
Librería: Librería Ofisierra, Galapagar, M, España
EUR 10,00
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Good condition. Dog-eared corners. Libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 101,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 102,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 101,43
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc., New York, NY, 2012
ISBN 10: 1461352983 ISBN 13: 9781461352983
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 117,16
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, Dordrecht, 2002
ISBN 10: 079237679X ISBN 13: 9780792376798
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 117,59
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. Based on ideas from Support Vector Machines (SVMs), this title presents an approach to generating text classifiers from examples. This book gives a detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, and, efficient performance estimation. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 112,01
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 112,01
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 113,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 137,44
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 228.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 2002
ISBN 10: 079237679X ISBN 13: 9780792376798
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 134,50
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Based on ideas from Support Vector Machines (SVMs), this title presents an approach to generating text classifiers from examples. This book gives a detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, and, efficient performance estimation. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 205 pages, biography. BIC Classification: UYQM. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 234 x 156 x 14. Weight in Grams: 498. . 2002. Hardback. . . . .
Idioma: Inglés
Publicado por Springer US, Springer US Apr 2002, 2002
ISBN 10: 079237679X ISBN 13: 9780792376798
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 2002
ISBN 10: 079237679X ISBN 13: 9780792376798
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 164,55
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Based on ideas from Support Vector Machines (SVMs), this title presents an approach to generating text classifiers from examples. This book gives a detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, and, efficient performance estimation. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 205 pages, biography. BIC Classification: UYQM. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 234 x 156 x 14. Weight in Grams: 498. . 2002. Hardback. . . . . Books ship from the US and Ireland.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 112,77
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.
Idioma: Inglés
Publicado por Springer US, Springer US, 2002
ISBN 10: 079237679X ISBN 13: 9780792376798
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 114,36
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 172,21
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 162,72
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 193,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc., New York, NY, 2012
ISBN 10: 1461352983 ISBN 13: 9781461352983
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 193,71
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, Dordrecht, 2002
ISBN 10: 079237679X ISBN 13: 9780792376798
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 213,39
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. Based on ideas from Support Vector Machines (SVMs), this title presents an approach to generating text classifiers from examples. This book gives a detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, and, efficient performance estimation. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. 224 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with .
Librería: moluna, Greven, Alemania
EUR 92,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with .
Librería: Majestic Books, Hounslow, Reino Unido
EUR 142,66
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 228 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.