EUR 35,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 250 Illus.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 36,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 250.
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
EUR 44,77
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
EUR 37,27
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 250.
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 70,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
EUR 77,79
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carrito
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 116,21
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 116,21
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 112,77
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.
EUR 118,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. The only book that covers the emerging topic of multiple database mining Focuses on developing new techniques for multi-database miningUrgent need to analyse data in multi-databases as a great deal of multi-databases are widely used in orga.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,60
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 102,93
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer London Aug 2004, 2004
ISBN 10: 1852337036 ISBN 13: 9781852337032
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 162,93
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 163,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
EUR 188,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: moluna, Greven, Alemania
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The only book that covers the emerging topic of multiple database mining Focuses on developing new techniques for multi-database miningUrgent need to analyse data in multi-databases as a great deal of multi-databases are widely used in orga.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 136,38
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 506.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 136,50
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 384.
Publicado por Springer London, Springer London Okt 2012, 2012
ISBN 10: 1447110501 ISBN 13: 9781447110507
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch.
Publicado por Springer London Okt 2012, 2012
ISBN 10: 1447110501 ISBN 13: 9781447110507
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 149,75
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining. 248 pp. Englisch.