Publicado por Springer Nature Singapore, 2018
ISBN 10: 9811083959 ISBN 13: 9789811083952
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 10,80
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2018
ISBN 10: 9811083959 ISBN 13: 9789811083952
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 111,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book describes the authors' investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: 'intra-textual incongruity' where the authors look at incongruity within the text to be classified (i.e., target text) and 'context incongruity' where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author's historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2019
ISBN 10: 9811341397 ISBN 13: 9789811341397
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 111,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book describes the authors' investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: 'intra-textual incongruity' where the authors look at incongruity within the text to be classified (i.e., target text) and 'context incongruity' where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author's historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media.
Publicado por Springer Nature Singapore, Springer Nature Singapore Jan 2019, 2019
ISBN 10: 9811341397 ISBN 13: 9789811341397
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book describes the authors¿ investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: ¿intra-textual incongruity¿ where the authors look at incongruity within the text to be classified (i.e., target text) and ¿context incongruity¿ where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author¿s historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch.
Publicado por Springer Nature Singapore, Springer Nature Singapore Apr 2018, 2018
ISBN 10: 9811083959 ISBN 13: 9789811083952
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book describes the authors¿ investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: ¿intra-textual incongruity¿ where the authors look at incongruity within the text to be classified (i.e., target text) and ¿context incongruity¿ where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author¿s historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 143,59
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 144,18
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 156.
Publicado por Springer-Verlag New York Inc, 2019
ISBN 10: 9811341397 ISBN 13: 9789811341397
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 179,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 156 pages. 9.25x6.10x0.36 inches. In Stock.
Librería: moluna, Greven, Alemania
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a tabular summary of the past work on computational sarcasmLays down the linguistic foundations for computational sarcasmPresents elaborate examples motivating each work module Describes approaches spanning multiple mac.
Librería: moluna, Greven, Alemania
EUR 92,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a tabular summary of the past work on computational sarcasmLays down the linguistic foundations for computational sarcasmPresents elaborate examples motivating each work module Describes approaches spanning multiple mac.
Publicado por Springer Nature Singapore Jan 2019, 2019
ISBN 10: 9811341397 ISBN 13: 9789811341397
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware - This book describes the authors' investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: 'intra-textual incongruity' where the authors look at incongruity within the text to be classified (i.e., target text) and 'context incongruity' where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author's historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media. 156 pp. Englisch.
Publicado por Springer Nature Singapore Apr 2018, 2018
ISBN 10: 9811083959 ISBN 13: 9789811083952
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware - This book describes the authors' investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: 'intra-textual incongruity' where the authors look at incongruity within the text to be classified (i.e., target text) and 'context incongruity' where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author's historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media. 156 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 150,14
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 151,03
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 156.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 153,74
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 154,64
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 156.