Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 72,11
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 75,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 68,58
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 75,37
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 83,48
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America
EUR 38,59
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritohardcover. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 90,24
Convertir monedaCantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 66,29
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing AG, Cham, 2020
ISBN 10: 3031012984 ISBN 13: 9783031012983
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 77,71
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on ZermeloFraenkel Set Theory with the Axiom of Choice, and a brief explanation of Goedel's Incompleteness Theorems. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Springer International Publishing AG, Cham, 2020
ISBN 10: 3031012984 ISBN 13: 9783031012983
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 129,44
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on ZermeloFraenkel Set Theory with the Axiom of Choice, and a brief explanation of Goedel's Incompleteness Theorems. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Morgan & Claypool Publishers, 2020
ISBN 10: 1681738813 ISBN 13: 9781681738819
Idioma: Inglés
Librería: Literary Cat Books, Machynlleth, Powys, WALES, Reino Unido
Miembro de asociación: IOBA
EUR 164,89
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoOriginal decorated boards. Condición: New. Print on demand. Slight shelfwear. ; Octavo; 233 pages.
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2020
ISBN 10: 3031012984 ISBN 13: 9783031012983
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 60,06
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a br.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 85,52
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 87,78
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.