Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
EUR 36,86
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.98.
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 45,52
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 38,09
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. pp. 290.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 40,13
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. pp. 290.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 50,67
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer International Publishing, 2016
ISBN 10: 3319219022 ISBN 13: 9783319219028
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 42,79
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 40,28
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 290.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 55,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 45,42
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 46,90
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 50,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, Springer International Publishing Feb 2016, 2016
ISBN 10: 3319219022 ISBN 13: 9783319219028
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 42,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This gentle introduction to High Performance Computing (HPC) for DataScience using the Message Passing Interface (MPI) standard has beendesigned as a first course for undergraduates on parallel programming ondistributed memory models, and requires only basic programming notions.Dividedinto two parts the first part covers high performance computing usingC++ with the Message Passing Interface (MPI) standard followed by asecond part providing high-performance data analytics on computerclusters.In the first part, the fundamental notions of blockingversus non-blocking point-to-point communications, global communications(like broadcast or scatter) and collaborative computations (reduce)with Amdalh and Gustafson speed-up laws are described before addressingparallel sorting and parallel linear algebra on computer clusters. Thecommon ring, torus and hypercube topologies of clusters are thenexplained and global communication procedures on these topologies arestudied. This first part closes with the MapReduce (MR) model ofcomputation well-suited to processing big data using the MPI framework.Inthe second part, the book focuses on high-performance data analytics.Flat and hierarchical clustering algorithms are introduced for dataexploration along with how to program these algorithms on computerclusters, followed by machine learning classification, and anintroduction to graph analytics. This part closes with a conciseintroduction to data core-sets that let big data problems be amenable totiny data problems.Exercises are included at the end of eachchapter in order for students to practice the concepts learned, and afinal section contains an overall exam which allows them to evaluate howwell they have assimilated the material covered in the book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 316 pp. Englisch.
Publicado por Springer-Verlag New York Inc, 2016
ISBN 10: 3319219022 ISBN 13: 9783319219028
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 73,20
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 316 pages. 9.00x6.25x0.75 inches. In Stock.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 84,33
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 74,56
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 49,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 104,88
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer International Publishing Feb 2016, 2016
ISBN 10: 3319219022 ISBN 13: 9783319219028
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 42,79
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions.Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters.In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework.In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems.Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book. 316 pp. Englisch.
Publicado por Springer International Publishing, 2016
ISBN 10: 3319219022 ISBN 13: 9783319219028
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 38,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Contains numerous exercises and a test examFeatures material that has been used and tested with studentsProvides additional material, including source C++/MPI codes and slides for each chapter, on an accompanying websiteContains .