Publicado por Basel , Birkhäuser [2001]., 2001
ISBN 10: 0817664033 ISBN 13: 9780817664039
Idioma: Inglés
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
EUR 20,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 57 TUR 9780817664039 Sprache: Englisch Gewicht in Gramm: 450.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 52,63
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Publicado por Birkhauser Verlag AG, Basel, 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 66,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei- demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. Offers an introduction to combinatorial torsions of cellular spaces and manifolds with emphasis on torsions of 3-dimensional manifolds. This book describes the results of G Meng, C H Taubes and the author on the connections between the refined torsions and the Seiberg-Witten invariant of 3-manifolds. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 57,95
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 56,00
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 73,43
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 132.
Publicado por Basel. Birkhäuser Verlag., 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Idioma: Inglés
Librería: Antiquariat Bernhardt, Kassel, Alemania
EUR 40,08
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritokartoniert. Condición: Sehr gut. Zust: Gutes Exemplar. 123 Seiten, mit Abbildungen, Englisch 264g.
EUR 40,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03994 9783764364038 Sprache: Englisch Gewicht in Gramm: 1050.
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
EUR 105,92
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. In shrink wrap. Looks like an interesting title!
EUR 58,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.
Publicado por Birkhauser Verlag AG, Basel, 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 110,88
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei- demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. Offers an introduction to combinatorial torsions of cellular spaces and manifolds with emphasis on torsions of 3-dimensional manifolds. This book describes the results of G Meng, C H Taubes and the author on the connections between the refined torsions and the Seiberg-Witten invariant of 3-manifolds. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer, Basel, Birkhäuser Basel, Birkhäuser Jan 2001, 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. 124 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 75,32
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 132 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 77,93
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 132.
Librería: moluna, Greven, Alemania
EUR 52,76
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.
Publicado por Birkhäuser Basel, Springer Basel Jan 2001, 2001
ISBN 10: 3764364033 ISBN 13: 9783764364038
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 58,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. 132 pp. Englisch.