Publicado por Packt Publishing, Limited, 2022
ISBN 10: 180323542X ISBN 13: 9781803235424
Idioma: Inglés
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 32,38
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 50,08
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 53,13
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 55,54
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 58,84
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 52,69
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 57,72
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 57,71
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 62,80
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 63,48
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. This hands-on book will help you make your machine learning models fairer, safer, and more reliable and in turn improve business outcomes. Every chapter introduces a new mission where you learn how to apply interpretation methods to realistic use cases with.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 70,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A deep dive into the key aspects and challenges of machine learning interpretability using a comprehensive toolkit, including SHAP, feature importance, and causal inference, to build fairer, safer, and more reliable models.Purchase of the print or Kindle book includes a free Elektronisches Buch in PDF format.Key FeaturesInterpret real-world data, including cardiovascular disease data and the COMPAS recidivism scoresBuild your interpretability toolkit with global, local, model-agnostic, and model-specific methodsAnalyze and extract insights from complex models from CNNs to BERT to time series modelsBook DescriptionInterpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models.Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps.In addition to the step-by-step code, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability.By the end of the book, you'll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.What you will learnProgress from basic to advanced techniques, such as causal inference and quantifying uncertaintyBuild your skillset from analyzing linear and logistic models to complex ones, such as CatBoost, CNNs, and NLP transformersUse monotonic and interaction constraints to make fairer and safer modelsUnderstand how to mitigate the influence of bias in datasetsLeverage sensitivity analysis factor prioritization and factor fixing for any modelDiscover how to make models more reliable with adversarial robustnessWho this book is forThis book is for data scientists, machine learning developers, machine learning engineers, MLOps engineers, and data stewards who have an increasingly critical responsibility to explain how the artificial intelligence systems they develop work, their impact on decision making, and how they identify and manage bias. It's also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a good grasp of the Python programming language is needed to implement the examples.Table of ContentsInterpretation, Interpretability and Explainability; and why does it all matter Key Concepts of InterpretabilityInterpretation ChallengesGlobal Model-agnostic Interpretation MethodsLocal Model-agnostic Interpretation MethodsAnchors and Counterfactual ExplanationsVisualizing Convolutional Neural NetworksInterpreting NLP TransformersInterpretation Methods for Multivariate Forecasting and Sensitivity AnalysisFeature Selection and Engineering for InterpretabilityBias Mitigation and Causal Inference MethodsMonotonic Constraints and Model Tuning for InterpretabilityAdversarial RobustnessWhat's Next for Machine Learning Interpretability.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 76,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Understand the key aspects and challenges of machine learning interpretability, learn how to overcome them with interpretation methods, and leverage them to build fairer, safer, and more reliable modelsKey Features:Learn how to extract easy-to-understand insights from any machine learning modelBecome well-versed with interpretability techniques to build fairer, safer, and more reliable modelsMitigate risks in AI systems before they have broader implications by learning how to debug black-box modelsBook Description:Do you want to understand your models and mitigate risks associated with poor predictions using machine learning (ML) interpretation Interpretable Machine Learning with Python can help you work effectively with ML models.The first section of the book is a beginner's guide to interpretability, covering its relevance in business and exploring its key aspects and challenges. You'll focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. The second section will get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, the book also helps the reader to interpret model outcomes using examples. In the third section, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you'll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining.By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.What You Will Learn: Recognize the importance of interpretability in businessStudy models that are intrinsically interpretable such as linear models, decision trees, and Naïve BayesBecome well-versed in interpreting models with model-agnostic methodsVisualize how an image classifier works and what it learnsUnderstand how to mitigate the influence of bias in datasetsDiscover how to make models more reliable with adversarial robustnessUse monotonic constraints to make fairer and safer modelsWho this book is for:This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.
Publicado por Packt Publishing Limited
ISBN 10: 180020390X ISBN 13: 9781800203907
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 63,72
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 222.