Publicado por Cambridge University Press, 2001
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
EUR 20,78
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. 480 pp., Paperback, previous owner's name to verso of front cover and small inscription to verso of back cover, remainder mark to bottom edge of pages else very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 63,96
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Publicado por Cambridge University Press, 2001
Idioma: Inglés
Librería: Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Alemania
Original o primera edición
EUR 58,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoOriginalbroschur. 25cm. Condición: Wie neu. First published. XVII,459 pages. INDEX. In EXCELLENT shape. Sprache: Englisch Gewicht in Gramm: 650.
Publicado por Cambridge University Press, Cambridge, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: Feldman's Books, Menlo Park, CA, Estados Unidos de America
Original o primera edición
EUR 48,38
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoft cover. Condición: Fine. 1st Edition.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 86,20
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: ZBK Books, Carlstadt, NJ, Estados Unidos de America
EUR 23,97
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: good. Fast & Free Shipping â" Good condition with a solid cover and clean pages. Shows normal signs of use such as light wear or a few marks highlighting, but overall a well-maintained copy ready to enjoy. Supplemental items like CDs or access codes may not be included.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 87,96
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 78,42
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press 2010-08-02, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 82,90
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 85,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 90,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 93,74
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 21,73
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
Original o primera edición
EUR 91,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 117,48
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 78,36
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 115,56
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
EUR 118,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. In shrink wrap. Looks like an interesting title!
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Original o primera edición
EUR 94,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 186,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 211,99
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
Original o primera edición
EUR 195,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 202,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 188,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 234,47
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Cambridge University Press, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 268,44
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional.' The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Publicado por Cambridge University Press, Cambridge, 2001
ISBN 10: 0521632048 ISBN 13: 9780521632041
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Original o primera edición
EUR 224,40
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 281,46
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 461 pages. 9.25x6.25x1.00 inches. In Stock.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 80,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1st edition. 480 pages. 6.00x9.25x1.25 inches. In Stock. This item is printed on demand.
Publicado por Cambridge University Press, 2010
ISBN 10: 0521635640 ISBN 13: 9780521635646
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 85,38
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 730.