Publicado por Springer Nature Singapore, 2022
ISBN 10: 9811950725 ISBN 13: 9789811950728
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
EUR 76,80
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 185,71
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 186,34
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10: 981195075X ISBN 13: 9789811950759
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 165,03
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification.
Publicado por Springer Nature Singapore, Springer Nature Singapore, 2022
ISBN 10: 9811950725 ISBN 13: 9789811950728
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 164,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification.
Publicado por Springer-Nature New York Inc, 2022
ISBN 10: 9811950725 ISBN 13: 9789811950728
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 232,61
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 189 pages. 9.25x6.10x0.63 inches. In Stock.