Publicado por Scholars' Press Feb 2017, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 94,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 268 pp. Englisch.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 137,68
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 268 pages. 8.66x5.91x0.61 inches. In Stock.
Publicado por Scholars' Press Feb 2017, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 94,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature. 268 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 75,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Tran KhoaDr. Tran earned his Ph.D. in Computer and Information Sciences from Nova Southeastern University in Florida, M.S. degree in Computer Science from California State University at Fullerton, and B.S. degree in Information and .
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 94,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature.