Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 166,32
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 166,32
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: BOOKWEST, Phoenix, AZ, Estados Unidos de America
EUR 145,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New. US SELLER SHIPS FAST FROM USA.
Publicado por Springer US, Springer US, 2012
ISBN 10: 1461372542 ISBN 13: 9781461372547
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 162,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in computer memory and/or transmit it over a communication link. Over the past decade advancements in technology have spawned many applications of digital imaging, such as photo videotex, desktop publishing, graphics arts, color facsimile, newspaper wire phototransmission and medical imaging. For many other contemporary applications, such as distributed multimedia systems, rapid transmission of images is necessary. Dollar cost as well as time cost of transmission and storage tend to be directly proportional to the volume of data. Therefore, application of digital image compression techniques becomes necessary to minimize costs. A number of digital image compression algorithms have been developed and standardized. With the success of these algorithms, research effort is now directed towards improving implementation techniques. The Joint Photographic Experts Group (JPEG) and Motion Photographic Experts Group(MPEG) are international organizations which have developed digital image compression standards. Hardware (VLSI chips) which implement the JPEG image compression algorithm are available. Such hardware is specific to image compression only and cannot be used for other image processing applications. A flexible means of implementing digital image compression algorithms is still required. An obvious method of processing different imaging applications on general purpose hardware platforms is to develop software implementations. JPEG uses an 8 × 8 block of image samples as the basic element for compression. These blocks are processed sequentially. There is always the possibility of having similar blocks in a given image. If similar blocks in an image are located, then repeatedcompression of these blocks is not necessary. By locating similar blocks in the image, the speed of compression can be increased and the size of the compressed image can be reduced. Based on this concept an enhancement to the JPEG algorithm is proposed, called Bock Comparator Technique (BCT). Still Image Compression on Parallel Computer Architectures is designed for advanced students and practitioners of computer science. This comprehensive reference provides a foundation for understanding digital image compression techniques and parallel computer architectures.
EUR 178,14
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in .
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 156,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 156,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 148,48
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 226,98
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 226,98
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 247,94
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in computer memory and/or transmit it over a communication link. Over the past decade advancements in technology have spawned many applications of digital imaging, such as photo videotex, desktop publishing, graphics arts, color facsimile, newspaper wire phototransmission and medical imaging. For many other contemporary applications, such as distributed multimedia systems, rapid transmission of images is necessary. Dollar cost as well as time cost of transmission and storage tend to be directly proportional to the volume of data. Therefore, application of digital image compression techniques becomes necessary to minimize costs. A number of digital image compression algorithms have been developed and standardized. With the success of these algorithms, research effort is now directed towards improving implementation techniques. The Joint Photographic Experts Group (JPEG) and Motion Photographic Experts Group(MPEG) are international organizations which have developed digital image compression standards. Hardware (VLSI chips) which implement the JPEG image compression algorithm are available. Such hardware is specific to image compression only and cannot be used for other image processing applications. A flexible means of implementing digital image compression algorithms is still required. An obvious method of processing different imaging applications on general purpose hardware platforms is to develop software implementations. JPEG uses an 8 × 8 block of image samples as the basic element for compression. These blocks are processed sequentially. There is always the possibility of having similar blocks in a given image. If similar blocks in an image are located, then repeatedcompression of these blocks is not necessary. By locating similar blocks in the image, the speed of compression can be increased and the size of the compressed image can be reduced. Based on this concept an enhancement to the JPEG algorithm is proposed, called Bock Comparator Technique (BCT). Still Image Compression on Parallel Computer Architectures is designed for advanced students and practitioners of computer science. This comprehensive reference provides a foundation for understanding digital image compression techniques and parallel computer architectures.
Librería: moluna, Greven, Alemania
EUR 136,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in .
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in computer memory and/or transmit it over a communication link. Over the past decade advancements in technology have spawned many applications of digital imaging, such as photo videotex, desktop publishing, graphics arts, color facsimile, newspaper wire phototransmission and medical imaging. For many other contemporary applications, such as distributed multimedia systems, rapid transmission of images is necessary. Dollar cost as well as time cost of transmission and storage tend to be directly proportional to the volume of data. Therefore, application of digital image compression techniques becomes necessary to minimize costs. A number of digital image compression algorithms have been developed and standardized. With the success of these algorithms, research effort is now directed towards improving implementation techniques. The Joint Photographic Experts Group (JPEG) and Motion Photographic Experts Group(MPEG) are international organizations which have developed digital image compression standards. Hardware (VLSI chips) which implement the JPEG image compression algorithm are available. Such hardware is specific to image compression only and cannot be used for other image processing applications. A flexible means of implementing digital image compression algorithms is still required. An obvious method of processing different imaging applications on general purpose hardware platforms is to develop software implementations. JPEG uses an 8 × 8 block of image samples as the basic element for compression. These blocks are processed sequentially. There is always the possibility of having similar blocks in a given image. If similar blocks in an image are located, then repeated compression of these blocks is not necessary. By locating similar blocks in the image, the speed of compression can be increased and the size of the compressed image can be reduced. Based on this concept an enhancement to the JPEG algorithm is proposed, called Bock Comparator Technique (BCT). Still Image Compression on Parallel Computer Architectures is designed for advanced students and practitioners of computer science. This comprehensive reference provides a foundation for understanding digital image compression techniques and parallel computer architectures. 232 pp. Englisch.
Publicado por Springer US, Springer US Okt 2012, 2012
ISBN 10: 1461372542 ISBN 13: 9781461372547
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Still Image Compression on Parallel Computer Architectures investigates the application of parallel-processing techniques to digital image compression. Digital image compression is used to reduce the number of bits required to store an image in computer memory and/or transmit it over a communication link. Over the past decade advancements in technology have spawned many applications of digital imaging, such as photo videotex, desktop publishing, graphics arts, color facsimile, newspaper wire phototransmission and medical imaging. For many other contemporary applications, such as distributed multimedia systems, rapid transmission of images is necessary. Dollar cost as well as time cost of transmission and storage tend to be directly proportional to the volume of data. Therefore, application of digital image compression techniques becomes necessary to minimize costs.A number of digital image compression algorithms have been developed and standardized. With the success of these algorithms, research effort is now directed towards improving implementation techniques. The Joint Photographic Experts Group (JPEG) and Motion Photographic Experts Group(MPEG) are international organizations which have developed digital image compression standards. Hardware (VLSI chips) which implement the JPEG image compression algorithm are available. Such hardware is specific to image compression only and cannot be used for other image processing applications. A flexible means of implementing digital image compression algorithms is still required. An obvious method of processing different imaging applications on general purpose hardware platforms is to develop software implementations.JPEG uses an 8 × 8 block of image samples as the basic element for compression. These blocks are processed sequentially. There is always the possibility of having similar blocks in a given image. If similar blocks in an image are located, then repeatedcompression of these blocks is not necessary. By locating similar blocks in the image, the speed of compression can be increased and the size of the compressed image can be reduced. Based on this concept an enhancement to the JPEG algorithm is proposed, called Bock Comparator Technique (BCT).Still Image Compression on Parallel Computer Architectures is designed for advanced students and practitioners of computer science. This comprehensive reference provides a foundation for understanding digital image compression techniques and parallel computer architectures.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch.