Publicado por Packt Publishing, Limited, 2020
ISBN 10: 1838826041 ISBN 13: 9781838826048
Idioma: Inglés
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 18,16
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 35,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 39,87
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Packt Publishing 7/24/2020, 2020
ISBN 10: 1838826041 ISBN 13: 9781838826048
Idioma: Inglés
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 44,06
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine lear 1.45. Book.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 44,85
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
EUR 47,87
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Librería: Russell Books, Victoria, BC, Canada
EUR 48,32
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Special order direct from the distributor.
Publicado por Packt Publishing 2020-07, 2020
ISBN 10: 1838826041 ISBN 13: 9781838826048
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 39,00
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 44,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: moluna, Greven, Alemania
EUR 48,76
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. This book covers the theory and practice of building data-driven solutions. Includes the end-to-end process, using supervised and unsupervised algorithms. With each algorithm, you will learn the data acquisition and data engineering methods, the apt metrics.
Publicado por Packt Publishing, Limited, 2020
ISBN 10: 1838826041 ISBN 13: 9781838826048
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 52,49
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 384.
Publicado por Packt Publishing Limited, 2020
ISBN 10: 1838826041 ISBN 13: 9781838826048
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 48,72
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 62,74
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problemsKey FeaturesDelve into machine learning with this comprehensive guide to scikit-learn and scientific PythonMaster the art of data-driven problem-solving with hands-on examplesFoster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithmsBook DescriptionMachine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You'll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you'll gain a thorough understanding of its theory and learn when to apply it. As you advance, you'll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.By the end of this machine learning book, you'll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You'll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.What you will learnUnderstand when to use supervised, unsupervised, or reinforcement learning algorithmsFind out how to collect and prepare your data for machine learning tasksTackle imbalanced data and optimize your algorithm for a bias or variance tradeoffApply supervised and unsupervised algorithms to overcome various machine learning challengesEmploy best practices for tuning your algorithm's hyper parametersDiscover how to use neural networks for classification and regressionBuild, evaluate, and deploy your machine learning solutions to productionWho this book is forThis book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.