Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 145,64
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 149,82
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 148,64
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 155,74
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 146,90
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 164,51
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 161,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 163,23
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 570.
Librería: moluna, Greven, Alemania
EUR 135,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 219,32
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 240 pages. 9.19x6.13x0.69 inches. In Stock.
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032136871 ISBN 13: 9781032136875
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 79,51
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Machine learning has shown tremendous benefits in solving complex network problems and providing situation and parameter prediction. However, heavy resources are required to process and analyze the data, which can be done either offline or using edge computing but also requires heavy transmission resources to provide a timely response. The need here is to provide lightweight machine learning protocols that can process and analyze the data at run time and provide a timely and efficient response. These algorithms have grown in terms of computation and memory requirements due to the availability of large data sets. These models/algorithms also require high levels of resources such as computing, memory, communication, and storage. The focus so far was on producing highly accurate models for these communication networks without considering the energy consumption of these machine learning algorithms.For future scalable and sustainable network applications, efforts are required toward designing new machine learning protocols and modifying the existing ones, which consume less energy, i.e., green machine learning protocols. In other words, novel and lightweight green machine learning algorithms/protocols are required to reduce energy consumption which can also reduce the carbon footprint. To realize the green machine learning protocols, this book presents different aspects of green machine learning for future communication networks. This book highlights mainly the green machine learning protocols for cellular communication, federated learning-based models, and protocols for Beyond Fifth Generation networks, approaches for cloud-based communications, and Internet-of-Things. This book also highlights the design considerations and challenges for green machine learning protocols for different future applications. This book covers the green machine learning protocols for cellular communication, federated learning-based models and protocols for beyond 5th-generation networks, approaches for cloud-based communications, and IoT, the design considerations and challenges for green machine learning protocols for different future applications. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032136871 ISBN 13: 9781032136875
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 80,29
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Machine learning has shown tremendous benefits in solving complex network problems and providing situation and parameter prediction. However, heavy resources are required to process and analyze the data, which can be done either offline or using edge computing but also requires heavy transmission resources to provide a timely response. The need here is to provide lightweight machine learning protocols that can process and analyze the data at run time and provide a timely and efficient response. These algorithms have grown in terms of computation and memory requirements due to the availability of large data sets. These models/algorithms also require high levels of resources such as computing, memory, communication, and storage. The focus so far was on producing highly accurate models for these communication networks without considering the energy consumption of these machine learning algorithms.For future scalable and sustainable network applications, efforts are required toward designing new machine learning protocols and modifying the existing ones, which consume less energy, i.e., green machine learning protocols. In other words, novel and lightweight green machine learning algorithms/protocols are required to reduce energy consumption which can also reduce the carbon footprint. To realize the green machine learning protocols, this book presents different aspects of green machine learning for future communication networks. This book highlights mainly the green machine learning protocols for cellular communication, federated learning-based models, and protocols for Beyond Fifth Generation networks, approaches for cloud-based communications, and Internet-of-Things. This book also highlights the design considerations and challenges for green machine learning protocols for different future applications. This book covers the green machine learning protocols for cellular communication, federated learning-based models and protocols for beyond 5th-generation networks, approaches for cloud-based communications, and IoT, the design considerations and challenges for green machine learning protocols for different future applications. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 170,92
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 173,47
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 159,79
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: preigu, Osnabrück, Alemania
EUR 160,80
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Green Machine Learning Protocols for Future Communication Networks | Saim Ghafoor (u. a.) | Buch | Einband - fest (Hardcover) | Englisch | 2023 | CRC Press | EAN 9781032136851 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 191,32
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book covers the green machine learning protocols for cellular communication, federated learning-based models and protocols for beyond 5th-generation networks, approaches for cloud-based communications, and IoT, the design considerations and challenges for green machine learning protocols for different future applications.