Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 32,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 37,15
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing AG, CH, 2020
ISBN 10: 3031004604 ISBN 13: 9783031004605
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 39,50
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs-a nascent but quickly growing subset of graph representation learning.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 31,90
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 29,04
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 31,89
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 35,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 57,14
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 58,19
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 75,15
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st Edition NO-PA16APR2015-KAP.
Publicado por Springer International Publishing AG, CH, 2020
ISBN 10: 3031004604 ISBN 13: 9783031004605
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 34,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs-a nascent but quickly growing subset of graph representation learning.
Publicado por Springer International Publishing, 2020
ISBN 10: 3031004604 ISBN 13: 9783031004605
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 58,84
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs-a nascent but quickly growing subset of graph representation learning.
Publicado por Springer Nature Switzerland, 2020
ISBN 10: 3031004604 ISBN 13: 9783031004605
Idioma: Inglés
Librería: preigu, Osnabrück, Alemania
EUR 54,20
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Graph Representation Learning | William L. Hamilton | Taschenbuch | xvii | Englisch | 2020 | Springer Nature Switzerland | EAN 9783031004605 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Librería: YESIBOOKSTORE, MIAMI, FL, Estados Unidos de America
EUR 165,67
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: As New.
Librería: GoldBooks, Denver, CO, Estados Unidos de America
EUR 308,91
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: new.
Publicado por Springer International Publishing Sep 2020, 2020
ISBN 10: 3031004604 ISBN 13: 9783031004605
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 58,84
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs-a nascent but quickly growing subset of graph representation learning. 160 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 78,36
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand This item is printed on demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 79,37
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2020
ISBN 10: 3031004604 ISBN 13: 9783031004605
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 51,51
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, re.
Publicado por Springer Nature Switzerland, Springer International Publishing Sep 2020, 2020
ISBN 10: 3031004604 ISBN 13: 9783031004605
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 58,84
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs¿a nascent but quickly growing subset of graph representation learning.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch.