Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (9)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición Más información

  • Nuevo (9)
  • Como nuevo, Excelente o Muy bueno (No hay ningún otro resultado que coincida con este filtro.)
  • Bueno o Aceptable (No hay ningún otro resultado que coincida con este filtro.)
  • Regular o Pobre (No hay ningún otro resultado que coincida con este filtro.)
  • Tal como se indica (No hay ningún otro resultado que coincida con este filtro.)

Encuadernación

  • Todas 
  • Tapa dura (9)
  • Tapa blanda (No hay ningún otro resultado que coincida con este filtro.)

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (4)
  • No impresión bajo demanda (6)

Idioma (1)

Precio

  • Cualquier precio 
  • Menos de EUR 20 (No hay ningún otro resultado que coincida con este filtro.)
  • EUR 20 a EUR 45 (No hay ningún otro resultado que coincida con este filtro.)
  • Más de EUR 45 
Intervalo de precios personalizado (EUR)

Gastos de envío gratis

  • Envío gratis a España (No hay ningún otro resultado que coincida con este filtro.)

Ubicación del vendedor

  • Pethuru Raj Chelliah

    Publicado por Springer, Berlin, Springer Nature Switzerland, Springer, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 11,99 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book explains the technologies and tools that underpin GNNs, offering a clear and practical guide to their industrial applications and use cases. AI engineers, data scientists, and researchers in AI and graph theory will find detailed insights into the latest trends and innovations driving this dynamic field. With practical chapters demonstrating how GNNs are reshaping various industry verticals and how they complement advances in generative, agentic, and physical AI this book is an essential resource for understanding and leveraging their potential.The neural network paradigm has surged in popularity for its ability to uncover hidden patterns within vast datasets. This transformative technology has spurred global innovations, particularly through the evolution of deep neural networks (DNNs). Convolutional neural networks (CNNs) have revolutionized computer vision, while recurrent neural networks (RNNs) and their advanced variants have automated natural language processing tasks such as speech recognition, translation, and content generation.Traditional DNNs primarily handle Euclidean data, yet many real-world problems involve non-Euclidean data complex relationships and interactions naturally represented as graphs. This challenge has driven the rise of graph neural networks (GNNs), an approach that extends deep learning into new domains.GNNs are powerful models designed to work with graph-structured data, where nodes represent individual data points and edges denote the relationships between them. Several variants have emerged:Graph Convolutional Networks (GCNs): These networks learn from a node s local neighborhood by aggregating information from adjacent nodes, updating the node s representation in the process.Graph Attentional Networks (GATs): By incorporating attention mechanisms, GATs focus on the most relevant neighbors during aggregation, enhancing model performance.Graph Recurrent Networks (GRNs): These networks combine principles from RNNs with graph structures to capture dynamic relationships within the data.GNNs are applied in a variety of advanced use cases, including node classification, link prediction, graph clustering, anomaly detection, recommendation systems, and also in natural language processing and computer vision. They help forecast traffic patterns, analyze molecular structures, verify programs, predict social influence, model electronic health records, and map brain networks.

  • Publicado por Springer, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: California Books, Miami, FL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 6,89 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New.

  • Pethuru Raj Chelliah

    Publicado por Springer International Publishing AG, Cham, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: CitiRetail, Stevenage, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 34,75 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. This book explains the technologies and tools that underpin GNNs, offering a clear and practical guide to their industrial applications and use cases. AI engineers, data scientists, and researchers in AI and graph theory will find detailed insights into the latest trends and innovations driving this dynamic field. With practical chapters demonstrating how GNNs are reshaping various industry verticalsand how they complement advances in generative, agentic, and physical AIthis book is an essential resource for understanding and leveraging their potential.The neural network paradigm has surged in popularity for its ability to uncover hidden patterns within vast datasets. This transformative technology has spurred global innovations, particularly through the evolution of deep neural networks (DNNs). Convolutional neural networks (CNNs) have revolutionized computer vision, while recurrent neural networks (RNNs) and their advanced variants have automated natural language processing tasks such as speech recognition, translation, and content generation.Traditional DNNs primarily handle Euclidean data, yet many real-world problems involve non-Euclidean datacomplex relationships and interactions naturally represented as graphs. This challenge has driven the rise of graph neural networks (GNNs), an approach that extends deep learning into new domains.GNNs are powerful models designed to work with graph-structured data, where nodes represent individual data points and edges denote the relationships between them. Several variants have emerged:Graph Convolutional Networks (GCNs): These networks learn from a nodes local neighborhood by aggregating information from adjacent nodes, updating the nodes representation in the process.Graph Attentional Networks (GATs): By incorporating attention mechanisms, GATs focus on the most relevant neighbors during aggregation, enhancing model performance.Graph Recurrent Networks (GRNs): These networks combine principles from RNNs with graph structures to capture dynamic relationships within the data.GNNs are applied in a variety of advanced use cases, including node classification, link prediction, graph clustering, anomaly detection, recommendation systems, and also in natural language processing and computer vision. They help forecast traffic patterns, analyze molecular structures, verify programs, predict social influence, model electronic health records, and map brain networks. mso-bidi-font-family: Georgia;">Graphs are non-Euclidean data structures increasingly used to simulate data from complex real-world scenarios such as brain networks, traffic networks, biological networks, citation networks, social networks, etc. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Publicado por Springer, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: Best Price, Torrance, CA, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 92,99 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Condición: New. SUPER FAST SHIPPING.

  • Chelliah, Pethuru Raj (Editor)/ Whig, Pawan (Editor)/ Nagarajan, Susila (Editor)/ Sakthivel, Usha (Editor)/ Yathiraju, Nikhitha (Editor)

    Publicado por Springer-Nature New York Inc, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: Revaluation Books, Exeter, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 11,58 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Hardcover. Condición: Brand New. 437 pages. 9.26x6.11x9.21 inches. In Stock.

  • Pethuru Raj Chelliah

    Publicado por Springer International Publishing AG, Cham, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 64,58 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Hardcover. Condición: new. Hardcover. This book explains the technologies and tools that underpin GNNs, offering a clear and practical guide to their industrial applications and use cases. AI engineers, data scientists, and researchers in AI and graph theory will find detailed insights into the latest trends and innovations driving this dynamic field. With practical chapters demonstrating how GNNs are reshaping various industry verticalsand how they complement advances in generative, agentic, and physical AIthis book is an essential resource for understanding and leveraging their potential.The neural network paradigm has surged in popularity for its ability to uncover hidden patterns within vast datasets. This transformative technology has spurred global innovations, particularly through the evolution of deep neural networks (DNNs). Convolutional neural networks (CNNs) have revolutionized computer vision, while recurrent neural networks (RNNs) and their advanced variants have automated natural language processing tasks such as speech recognition, translation, and content generation.Traditional DNNs primarily handle Euclidean data, yet many real-world problems involve non-Euclidean datacomplex relationships and interactions naturally represented as graphs. This challenge has driven the rise of graph neural networks (GNNs), an approach that extends deep learning into new domains.GNNs are powerful models designed to work with graph-structured data, where nodes represent individual data points and edges denote the relationships between them. Several variants have emerged:Graph Convolutional Networks (GCNs): These networks learn from a nodes local neighborhood by aggregating information from adjacent nodes, updating the nodes representation in the process.Graph Attentional Networks (GATs): By incorporating attention mechanisms, GATs focus on the most relevant neighbors during aggregation, enhancing model performance.Graph Recurrent Networks (GRNs): These networks combine principles from RNNs with graph structures to capture dynamic relationships within the data.GNNs are applied in a variety of advanced use cases, including node classification, link prediction, graph clustering, anomaly detection, recommendation systems, and also in natural language processing and computer vision. They help forecast traffic patterns, analyze molecular structures, verify programs, predict social influence, model electronic health records, and map brain networks. mso-bidi-font-family: Georgia;">Graphs are non-Euclidean data structures increasingly used to simulate data from complex real-world scenarios such as brain networks, traffic networks, biological networks, citation networks, social networks, etc. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Publicado por Springer Verlag GmbH, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: moluna, Greven, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 19,49 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.

  • Pethuru Raj Chelliah

    Publicado por Springer, Berlin, Springer Nature Switzerland, Springer, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 11,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book explains the technologies and tools that underpin GNNs, offering a clear and practical guide to their industrial applications and use cases. AI engineers, data scientists, and researchers in AI and graph theory will find detailed insights into the latest trends and innovations driving this dynamic field. With practical chapters demonstrating how GNNs are reshaping various industry verticals and how they complement advances in generative, agentic, and physical AI this book is an essential resource for understanding and leveraging their potential.The neural network paradigm has surged in popularity for its ability to uncover hidden patterns within vast datasets. This transformative technology has spurred global innovations, particularly through the evolution of deep neural networks (DNNs). Convolutional neural networks (CNNs) have revolutionized computer vision, while recurrent neural networks (RNNs) and their advanced variants have automated natural language processing tasks such as speech recognition, translation, and content generation.Traditional DNNs primarily handle Euclidean data, yet many real-world problems involve non-Euclidean data complex relationships and interactions naturally represented as graphs. This challenge has driven the rise of graph neural networks (GNNs), an approach that extends deep learning into new domains.GNNs are powerful models designed to work with graph-structured data, where nodes represent individual data points and edges denote the relationships between them. Several variants have emerged:Graph Convolutional Networks (GCNs): These networks learn from a node s local neighborhood by aggregating information from adjacent nodes, updating the node s representation in the process.Graph Attentional Networks (GATs): By incorporating attention mechanisms, GATs focus on the most relevant neighbors during aggregation, enhancing model performance.Graph Recurrent Networks (GRNs): These networks combine principles from RNNs with graph structures to capture dynamic relationships within the data.GNNs are applied in a variety of advanced use cases, including node classification, link prediction, graph clustering, anomaly detection, recommendation systems, and also in natural language processing and computer vision. They help forecast traffic patterns, analyze molecular structures, verify programs, predict social influence, model electronic health records, and map brain networks. 418 pp. Englisch.

  • Pethuru Raj Chelliah

    Publicado por Springer, Springer Jul 2025, 2025

    ISBN 10: 3031885376 ISBN 13: 9783031885372

    Idioma: Inglés

    Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 35,00 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book explains the technologies and tools that underpin GNNs, offering a clear and practical guide to their industrial applications and use cases. AI engineers, data scientists, and researchers in AI and graph theory will find detailed insights into the latest trends and innovations driving this dynamic field. With practical chapters demonstrating how GNNs are reshaping various industry verticalsand how they complement advances in generative, agentic, and physical AIthis book is an essential resource for understanding and leveraging their potential.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 440 pp. Englisch.