Publicado por Butterworth-Heinemann 2015-09-24, 2015
ISBN 10: 0128026871 ISBN 13: 9780128026878
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 74,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 86,33
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 320.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 83,77
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 320 pages. 8.75x6.00x0.75 inches. In Stock.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 92,59
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 320.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 96,92
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 320.
Publicado por Elsevier - Health Sciences Division, 2015
ISBN 10: 0128026871 ISBN 13: 9780128026878
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 93,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 529.
Librería: preigu, Osnabrück, Alemania
EUR 84,85
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Fuzzy Neural Networks for Real Time Control Applications | Concepts, Modeling and Algorithms for Fast Learning | Erdal Kayacan (u. a.) | Taschenbuch | Englisch | 2015 | Elsevier Science | EAN 9780128026878 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
EUR 80,45
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: new. Questo è un articolo print on demand.
Publicado por Elsevier Science Sep 2015, 2015
ISBN 10: 0128026871 ISBN 13: 9780128026878
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 86,95
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: . Gradient descent . Levenberg-Marquardt . Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. 264 pp. Englisch.
Publicado por Elsevier Science & Technology|Butterworth-Heinemann, 2015
ISBN 10: 0128026871 ISBN 13: 9780128026878
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 90,14
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 f.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 97,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: . Gradient descent . Levenberg-Marquardt . Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully.