Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 19,58
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoGebundene Ausgabe. Condición: Gut. Gebraucht - Gut - ungelesen, gut mit Mängeln an Schnitt oder Umschlag durch Lager- oder Transportschaden,Buchrücken beschädigt, als Mängelexemplar gekennzeichnet Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 141 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 97,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 160.
EUR 100,60
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 160 Illus.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 104,08
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 104,08
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 110,25
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 110,58
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 124,87
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 124,87
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Idioma: Inglés
Librería: Buchpark, Trebbin, Alemania
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 115,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 115,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 149,43
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 117,69
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -The application of a ¿committee of experts¿ or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg, 2014
ISBN 10: 3642423280 ISBN 13: 9783642423284
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 117,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The application of a 'committee of experts' or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 117,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The application of a 'committee of experts' or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.
EUR 162,56
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 141 pages. 9.00x6.25x0.75 inches. In Stock.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 180,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Okt 2014, 2014
ISBN 10: 3642423280 ISBN 13: 9783642423284
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 117,69
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The application of a 'committee of experts' or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems. 160 pp. Englisch.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 117,69
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The application of a 'committee of experts' or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems. 160 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2014
ISBN 10: 3642423280 ISBN 13: 9783642423284
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 101,04
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent research in Fusion Methods for Unsupervised Learning Ensembles Examines the potential of the ensemble meta-algorithm Written by leading experts in the fieldRecent research in Fusion Methods for Unsupervised Learning EnsemblesExamines th.
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 101,04
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent research in Fusion Methods for Unsupervised Learning Ensembles Examines the potential of the ensemble meta-algorithm Written by leading experts in the fieldRecent research in Fusion Methods for Unsupervised Learning EnsemblesExamines th.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 156,03
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 160,72
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Okt 2014, 2014
ISBN 10: 3642423280 ISBN 13: 9783642423284
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 117,69
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The application of a ¿committee of experts¿ or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch.